Consistent Sparse Deep Learning: Theory and Computation
===============================================================
We propose a frequentist-like method for learning sparse DNNs and justify its consistency under the Bayesian framework. The structure of the sparse DNN can be consistently determined using a Laplace approximation-based marginal posterior inclusion probability approach on a trained Bayesian neural network with mixture of normal prior.
### Related Publication
Yan Sun <sup> * </sup>, Qifan Song <sup> * </sup> and Faming Liang, [Consistent Sparse Deep Learning: Theory and Computation.](https://arxiv.org/pdf/2102.13229.pdf) *JASA, in press*.
### Reproduce Experimental Results in the Paper:
#### Simulation:
Generate Data:
```{python}
python Generate_Data.py
```
Regression:
```{python}
python Simulation_Regression.py --data_index 1 --activation 'tanh'
python Simulation_Regression.py --data_index 1 --activation 'relu'
```
Regression Baseline:
```{python}
python Dropout_Regression.py --data_index 1 --activation 'tanh'
python Dropout_Regression.py --data_index 1 --activation 'relu'
python Spinn_Regression.py --data_index 1 --activation 'tanh'
python Spinn_Regression.py --data_index 1 --activation 'relu'
python DPF_Regression.py --data_index 1 --activation 'tanh'
python DPF_Regression.py --data_index 1 --activation 'relu'
```
Classification
```{python}
python Simulation_Classification.py --data_index 1 --activation 'tanh'
python Simulation_Classification.py --data_index 1 --activation 'relu'
```
Classification Baseline:
```{python}
python Dropout_Classification.py --data_index 1 --activation 'tanh'
python Dropout_Classification.py --data_index 1 --activation 'relu'
python Spinn_Classification.py --data_index 1 --activation 'tanh'
python Spinn_Classification.py --data_index 1 --activation 'relu'
python DPF_Classification.py --data_index 1 --activation 'tanh'
python DPF_Classification.py --data_index 1 --activation 'relu'
```
Structure Selection
```{python}
python Simulation_Structure.py --data_index 1
```
Structure Selection Baseline:
```{python}
python Spinn_structure.py --data_index 1
```
#### Real Data:
CIFAR ResNet Compression
```{python}
python cifar_run.py --model_path 'resnet_32_10percent/' --sigma0 0.00002 --lambdan 0.00001 -depth 32 --seed 1
python cifar_run_vb.py --model_path 'resnet_32_10percent_vb/' --sigma0 0.00002 --lambdan 0.00001 --prune_ratio 0.1 -depth 32 --seed 1
python cifar_run.py --model_path 'resnet_32_5percent/' --sigma0 0.00006 --lambdan 0.0000001 -depth 32 --seed 1
python cifar_run_vb.py --model_path 'resnet_32_5percent_vb/' --sigma0 0.00006 --lambdan 0.0000001 --prune_ratio 0.05 -depth 32 --seed 1
python cifar_run.py --model_path 'resnet_20_10percent/' --sigma0 0.00004 --lambdan 0.000001 -depth 20 --seed 1
python cifar_run_vb.py --model_path 'resnet_20_10percent_vb/' --sigma0 0.00004 --lambdan 0.000001 --prune_ratio 0.1 -depth 20 --seed 1
python cifar_run.py --model_path 'resnet_20_20percent/' --sigma0 0.000006 --lambdan 0.000001 -depth 20 --seed 1
python cifar_run_vb.py --model_path 'resnet_20_20percent_vb/' --sigma0 0.000006 --lambdan 0.000001 --prune_ratio 0.2 -depth 20 --seed 1
```
蜜柚酱Lolita
- 粉丝: 32
- 资源: 4623
最新资源
- NSDocumentError如何解决.md
- ModuleNotFoundError解决办法.md
- InterruptedIOException(解决方案).md
- NSFileManagerOperationError如何解决.md
- LazyLoadError解决办法.md
- ConnectionAbortedError.md
- ConnectionRefusedError.md
- HarmonyException如何解决.md
- ClosedChannelException(解决方案).md
- PerformanceWarning解决办法.md
- ConnectionResetError.md
- RuntimeException如何解决.md
- 二手车价格预测,代码核心任务是通过机器学习模型(如线性回归、随机森林和KNN回归)预测车辆的价格(current price),并使用评估指标(如 R² 和 MSE)来衡量不同模型的预测效果
- 在线式缠绕膜机自动覆膜缠绕机sw16全套技术资料100%好用.zip
- 基于Arduino单片机的自动售票系统设计与实现
- 一次性纸杯塑料杯叠杯套膜包装机sw16可编辑全套技术资料100%好用.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
评论0