# landsat-tiler
#### AWS Lambda + Landsat AWS PDS = landsat-tiler
### Description
Create a highly customizable `serverless` tile server for Amazon's Landsat Public Dataset.
This project is based on [rio-tiler](https://github.com/mapbox/rio-tiler) python library.
![landsat-tiler-small](https://cloud.githubusercontent.com/assets/10407788/22255896/ec49f448-e226-11e6-8798-82794174eafe.gif)
#### Landsat data on AWS
Since 2015 Landsat 8 data is hosted on AWS and can be freely accessed. This dataset is growing over 700 scenes a day and have archive up to 2013.
> AWS has made Landsat 8 data freely available on Amazon S3 so that anyone can use our on-demand computing resources to perform analysis and create new products without needing to worry about the cost of storing Landsat data or the time required to download it.
more info: https://aws.amazon.com/public-datasets/landsat/
Something important about AWS Landsat-pds is that each Landsat scene has its individual bands stored as [cloud optimized GeoTIFF](https://trac.osgeo.org/gdal/wiki/CloudOptimizedGeoTIFF). While this is a critical point to work with the data, it also means that to create an RGB image and visualize it, you have to go through a lot of manual steps.
#### Lambda function
AWS Lambda is a service that lets you run functions in Node, Python, or Java in response to different triggers like API calls, file creation, database edits, etc.
In addition to only have to provide code, an other crucial point of AWS Lambda it that you only pay for the execution of the function, you don't have to pay for a 24/24h running server. It's called **serverless** cause you only need to care about the code you provide.
---
# Installation
##### Requirement
- AWS Account
- Docker
- node + npm
#### Create the package
Creating a python lambda package with some C (or Cython) libraries like Rasterio/GDAL has never been an easy task because you have to compile and build it on the same infrastructure where it's going to be used (Amazon linux AMI). Until recently, to create your package you had to launch an EC2 instance using the official Amazon Linux AMI and create your package on it (see [perrygeo blog](http://www.perrygeo.com/running-python-with-compiled-code-on-aws-lambda.html) or [Remotepixel blog](https://remotepixel.ca/blog/landsat8-ndvi-20160212.html)).
But this was before, Late 2016, the AWS team released the Amazon Linux image on docker, so it's now possible to use it `locally` to compile C libraries and create complex lambda package ([see Dockerfile](https://github.com/mapbox/landsat-tiler/blob/master/Dockerfile)).
Note: to stay under AWS lambda package sizes limits (100Mb zipped file / 250Mb unzipped archive) we need to use some [`tricks`](https://github.com/mapbox/landsat-tiler/blob/e4eebb512f51c55d95607daa483a14d2091fa0a1/Dockerfile#L30).
- use Rasterio wheels which is a complete rasterio distribution that support GeoTIFF, OpenJPEG formats.
- remove every packages that are already available natively in AWS Lambda (boto3, botocore ...)
- keep only precompiled python code (`.pyc`) so it lighter and it loads faster
```bash
# Build Amazon linux AMI docker container + Install Python modules + create package
git clone https://github.com/mapbox/landsat-tiler.git
cd landsat-tiler/
make all
```
#### Deploy to AWS
One of the easiest way to **Build** and **Deploy** a Lambda function is to use [Serverless](https://serverless.com) toolkit. We took care of the `building` part with docker so we will just ask **Serverless** to *only* upload our package file to AWS S3, to setup AWS Lambda and AWS API Gateway.
```bash
#configure serverless (https://serverless.com/framework/docs/providers/aws/guide/credentials/)
npm install
sls deploy
```
<img width="500" alt="sls deploy" src="https://cloud.githubusercontent.com/assets/10407788/22188728/d9ffec44-e0e5-11e6-9a77-569a791ccaf2.png">
:tada: You should be all set there.
---
# Use it: Landsat-viewer
#### lambda-tiler + Mapbox GL + Satellite API
The `viewer/` directory contains a UI example to use with your new Lambda Landsat tiler endpoint. It combine the power of mapbox-gl and the nice developmentseed [sat-api](https://github.com/sat-utils/sat-api) to create a simple and fast **Landsat-viewer**.
To be able to run it, edit those [two lines](https://github.com/mapbox/landsat-tiler/blob/master/viewer/js/app.js#L3-L4) in `viewer/js/app.js`
```js
// viewer/js/app.js
3 mapboxgl.accessToken = '{YOUR-MAPBOX-TOKEN}';
4 const landsat_tiler_url = "{YOUR-API-GATEWAY-URL}";
```
## Workflow
1. One AWS λ call to get min/max percent cut value for all the bands and bounds
*Path:* **/landsat/metdata/{landsat scene id}**
*Inputs:*
- sceneid: Landsat product id (or scene id for scene < 1st May 2017)
*Options:*
- pmin: Histogram cut minimum value in percent (default: 2)
- pmax: Histogram cut maximum value in percent (default: 98)
*Output:* (dict)
- bounds: (minX, minY, maxX, maxY) (list)
- sceneid: scene id (string)
- rgbMinMax: Min/Max DN values for the linear rescaling (dict)
*Example:* `<api-gateway-url>/landsat/metadata/LC08_L1TP_016037_20170813_20170814_01_RT?pmin=5&pmax=95`
2. Parallel AWS λ calls (one per mercator tile) to retrieve corresponding Landsat data
*Path:* **/landsat/tiles/{landsat scene id}/{z}/{x}/{y}.{ext}**
*Inputs:*
- sceneid: Landsat product id (or scene id for scene < 1st May 2017)
- x: Mercator tile X index
- y: Mercator tile Y index
- z: Mercator tile ZOOM level
- ext: Image format to return ("jpg" or "png")
*Options:*
- rgb: Bands index for the RGB combination (default: (4, 3, 2))
- histo: DN min and max values (default: (0, 16000))
- tile: Output image size (default: 256)
- pan: If True, apply pan-sharpening(default: False)
*Output:*
- base64 encoded image PNG or JPEG (string)
*Example:*
- `<api-gateway-url>/landsat/tile/LC08_L1TP_016037_20170813_20170814_01_RT/8/71/102.png`
- `<api-gateway-url>/landsat/tile/LC08_L1TP_016037_20170813_20170814_01_RT/8/71/102.png?rgb=5,4,3&histo=100,3000-130,270-500,4500&tile=1024&pan=true`
---
#### Live Demo: https://viewer.remotepixel.ca
#### Infos & links
- [rio-tiler](https://github.com/mapbox/rio-tiler) rasterio plugin that process Landsat data hosted on AWS S3.
- [Introducing the AWS Lambda Tiler](https://hi.stamen.com/stamen-aws-lambda-tiler-blog-post-76fc1138a145)
- Humanitarian OpenStreetMap Team [oam-dynamic-tiler](https://github.com/hotosm/oam-dynamic-tiler)
- [Linux Amazon AMI container](http://docs.aws.amazon.com/AmazonECR/latest/userguide/amazon_linux_container_image.html)
没有合适的资源?快使用搜索试试~ 我知道了~
landsat-tiler:使用AWS Lambda的无服务器Landsat tile服务器
共12个文件
py:2个
css:1个
md:1个
需积分: 10 2 下载量 148 浏览量
2021-02-05
20:14:03
上传
评论
收藏 16KB ZIP 举报
温馨提示
景观砖 AWS Lambda + Landsat AWS PDS =陆地图块 描述 为亚马逊的Landsat Public Dataset创建一个高度可定制的serverless切片服务器。 该项目基于 python库。 AWS上的Landsat数据 自2015年以来,Landsat 8数据托管在AWS上,可以免费访问。 该数据集每天增长700多个场景,并已存档至2013年。 AWS已在Amazon S3上免费提供Landsat 8数据,因此任何人都可以使用我们的按需计算资源来执行分析和创建新产品,而不必担心存储Landsat数据的成本或下载它们所需的时间。 更多信息: : 关于AW
资源详情
资源评论
资源推荐
收起资源包目录
landsat-tiler-master.zip (12个子文件)
landsat-tiler-master
Dockerfile 2KB
LICENSE 1KB
README.md 6KB
Makefile 3KB
serverless.yml 862B
.gitignore 839B
app
__init__.py 29B
landsat.py 4KB
viewer
index.html 5KB
js
app.js 10KB
css
style.css 5KB
package.json 418B
共 12 条
- 1
一起快走吧
- 粉丝: 35
- 资源: 4658
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 09MnNiDR钢制低温压力容器焊接工艺的确定.pdf
- 09MnNiDR钢制球罐用W707DRQ焊条焊接性能 - .pdf
- 09MnNiDR低温压力容器钢板的试验及焊接检验.pdf
- 9Ni钢低温储罐焊接工艺研究.pdf
- 9Cr与CrMoV异种焊接接头疲劳裂纹扩展门槛值研究.pdf
- 10CrMo910耐热钢的焊接工艺.pdf
- 10CrMo910炉管焊接.pdf
- 10Ni3MoVD锻件焊接裂纹敏感性试验研究.pdf
- 10t电动单梁桥式起重机主梁焊接变形的控制 - .pdf
- 10CrNi3MoV钢双面双弧焊接头组织与性能研究 - .pdf
- 10焊接工字形钢轴压构件截面设计的直接算法.pdf
- 10吨级叉车驱动桥体焊接工艺设计 - .pdf
- 10T级后桥焊接工艺分析.pdf
- 10万m 3原油储罐底板现场焊接及变形控制.pdf
- 10万m3大型原油储罐底板焊接质量控制分析.pdf
- 10万m3原油储罐典型焊接质量缺陷分析与处理.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0