【LQR和微分博弈1】讲解了最优控制的数学理论,主要涵盖了庞特里亚金极小值原理(PMP)和哈密顿-雅可比-贝尔曼方程(HJB方程),以及微分博弈的基础知识,并通过一个零和追逃博弈的实例进行了阐述。 最优控制问题在工程、经济和物理等多个领域都有广泛应用。其基本框架是,给定一个受控系统的动态方程,以及一个性能指标函数,目标是找到一个控制策略使得该性能指标达到最优。在这个过程中,状态方程描述了系统随时间变化的规律,而性能指标通常包括终态条件和过程成本。 庞特里亚金极小值原理是解决这类问题的一种方法。它指出,对于最优控制问题,存在一组辅助变量——协态(或称为李雅普诺夫向量),通过满足极值条件和规范方程来确定最优控制。极值条件表明,对于任意可行的控制,H函数(哈密顿量)的值在最优控制下是最小的。规范方程则给出了状态和协态的演化规则,同时边界条件处理了目标集的问题。 HJB方程是动态规划理论在连续时间控制问题中的体现,它源于贝尔曼的最优性原理。值函数定义为从某一初始状态和时间出发,采用最优控制策略到达目标时的性能指标。HJB方程描述了值函数随时间和状态变化的关系,且在最优控制下,值函数应满足该方程。当值函数存在二阶连续偏导数时,HJB方程提供了求解最优控制问题的微分必要条件。 微分博弈是多agent系统中决策优化的一个分支,涉及到两个或多个参与者相互作用的动态过程。每个参与者都试图最大化自己的效用,而这个效用可能与对方的策略直接相关。在零和追逃博弈的实例中,两个参与者(追者和逃者)通过调整各自的控制策略,试图达到各自的目标,例如追者试图抓住逃者,而逃者则要避免被捕。 总结来说,LQR(线性二次调节器)是一种特定的最优控制问题,而微分博弈则是考虑多方交互的最优控制理论。这些理论不仅在理论上有重要意义,也在实际应用中有着广泛的价值,如自动驾驶、航空航天控制、电力系统调度等。通过理解和应用PMP、HJB方程以及微分博弈理论,我们可以设计出更加智能和高效的控制系统。
剩余38页未读,继续阅读
- 粉丝: 35
- 资源: 315
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
评论0