import numpy as np
import matplotlib.pyplot as plt
import random as rd
# 模型训练函数
def gradientAscent(feature_data, label_data, k, maxCycle, alpha):
"""
利用梯度下降法训练Softmax模型
:param feature_data:(mat)特征
:param label_data:(mat)标签
:param k:(int)类别的个数
:param maxCycle:(int)最大迭代个数
:param alpha: (float)学习速率
:return:weights(mat)权重
"""
m, n = np.shape(feature_data)
weights = np.mat(np.ones((n, k)))
i = 0
while i <= maxCycle:
err = np.exp(feature_data * weights)
if i % 1000 == 0:
print("\t-----iter:", i, ",cost:", cost(err, label_data))
row_sum = -err.sum(axis=1)
row_sum = row_sum.repeat(k, axis=1)
err = err / row_sum
for x in range(m):
err[x, label_data[x, 0]] += 1
weights = weights + (alpha / m) * feature_data.T * err
i += 1
return weights
def cost(err, label_data):
"""
计算损失函数值
:param err:(mat),exp值
:param label_data:()mat标签的值
:return:sum_cost/m (float):损失函数的值
"""
m = np.shape(err)[0]
sum_cost = 0.0
for i in range(m):
if err[i, label_data[i, 0]] / np.sum(err[i, :]) > 0:
sum_cost -= np.log(err[i, label_data[i, 0]] / np.sum(err[i, :]))
else:
sum_cost -= 0
return sum_cost / m
def load_data(inputfile):
"""
:param inputfile:训练样本的文件名
:return:feature_data(mat)特征
label_data(mat)标签
k(int)类别的个数
"""
f = open(inputfile)
feature_data = []
label_data = []
for line in f.readlines():
feature_temp = []
feature_temp.append(1)
lines = line.strip().split("\t")
for i in range(len(lines) - 1):
feature_temp.append(float(lines[i]))
label_data.append(int(lines[-1]))
feature_data.append(feature_temp)
f.close()
# print(feature_data)
# feature_data = np.mat(feature_data)
# print(feature_data)
return np.mat(feature_data), np.mat(label_data).T, len(set(label_data))
def save_model(filename, weights):
"""
保存最终的模型
:param filename:(string)文件名
:param w: (mat)SR 模型的权重
:return:
"""
f_w = open(filename, "w")
m, n = np.shape(weights)
for i in range(m):
w_tmp = []
for j in range(n):
w_tmp.append(str(weights[i, j]))
f_w.write("\t".join(w_tmp) + "\n")
f_w.close()
def figurePlot(feature, label):
"""
根据标签画出各个类别的点图
:param feature:(mat)特征
:param label:(mat)标签
:return:
"""
point_red = []
point_blue = []
point_yellow = []
point_green = []
r = np.shape(feature)[0]
for index in range(r):
temp = -2 # 从右到左第二个数
if label[index] == 0:
point_red.append(feature[index, temp])
point_red.append(feature[index, temp + 1]) # 如果一次放两个元素feature[index, 1:3],会被当做一个整体存放在list中
elif label[index] == 1:
point_blue.append(feature[index, temp])
point_blue.append(feature[index, temp + 1])
elif label[index] == 2:
point_yellow.append(feature[index, temp])
point_yellow.append(feature[index, temp + 1])
else:
point_green.append(feature[index, temp])
point_green.append(feature[index, temp + 1])
# 画出图形
point_red = np.mat(point_red).reshape(-1, 2) # list转换成一维矩阵,再转换成二维矩阵
point_blue = np.mat(point_blue).reshape(-1, 2)
point_green = np.mat(point_green).reshape(-1, 2)
point_yellow = np.mat(point_yellow).reshape(-1, 2)
plt.scatter(point_red[:, 0].tolist(), point_red[:, 1].tolist(), c='r') # scatter函数只接受list,不接受matrix
plt.scatter(point_blue[:, 0].tolist(), point_blue[:, 1].tolist(), c='b')
plt.scatter(point_green[:, 0].tolist(), point_green[:, 1].tolist(), c='g')
plt.scatter(point_yellow[:, 0].tolist(), point_yellow[:, 1].tolist(), c='y')
plt.show()
# 模型测试函数
def load_weights(weights_path):
"""
训练好的softmax模型
:param weights_path:(string)文件名(文件的存储位置)
:return:weights(mat)将权重存储的矩阵中
m(int)权重的行数
n(int)权重的列数
"""
f = open(weights_path)
weights = []
for line in f.readlines():
w_tmp = []
lines = line.strip().split("\t")
for x in lines:
w_tmp.append(float(x))
weights.append(w_tmp)
f.close()
print(weights)
weights = np.mat(weights)
m, n = np.shape(weights)
return weights, m, n
def load_testData(num, m):
"""
导入测试数据
:param num:(int)生成测试样本的个数
:param m:(int)样本的维数
:return:testDataSet(mat)生成测试样本
"""
test_DataSet = np.mat(np.ones((num, m)))
for i in range(num):
# 随机生成[-3,3]之间的随机数,rd.random生成(0,1)之间的随机数
test_DataSet[i, 1] = rd.random() * 6 - 3
# 随机生成[0,15]之间的随机数
test_DataSet[i, 2] = rd.random() * 15
return test_DataSet
def predict(test_data, weights):
"""
利用训练好的Softmax模型对测试数据进行预测
:param test_data:(mat)测试数据的特征
:param weights:(mat)模型的权重
:return:h = argmax(axis=1)##行方向的最大值所在的列数,axis=1代表行
"""
h = test_data * weights
return h.argmax(axis=1) # 获得所属的类别
def save_result(filename, result):
"""
保存最终的预测结果
:param filename:(string)保存结果的文件名
:param result:(mat)最终的结果
:return:
"""
f_result = open(filename, 'w')
m = np.shape(result)[0]
for i in range(m):
f_result.write(str(result[i, 0]) + "\n")
f_result.close()
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
Softmax Regression(逻辑回归多线性分类).zip (11个子文件)
Softmax Regression(逻辑回归多线性分类)
test_result 12KB
SR_functions.py 6KB
__pycache__
SR_functions.cpython-36.pyc 5KB
.idea
misc.xml 294B
modules.xml 295B
workspace.xml 22KB
inspectionProfiles
Softmax Regression.iml 408B
SR_main.py 488B
SoftInput 3KB
weights 228B
SR_test.py 576B
共 11 条
- 1
资源评论
象牙塔小明
- 粉丝: 2563
- 资源: 10
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功