2021 年(第 43 卷)第 4 期
汽 车 工 程
Automotive Engineering
2021(Vol.43)No.4
基于最小模型误差估计的智能汽车路径跟踪控制
*
任 玥
1
,冀 杰
1
,赵 颖
1
,梁艺潇
2
,郑 玲
2
(1. 西南大学工程技术学院,重庆 400715;2. 重庆大学汽车工程学院,重庆 400044)
[摘要] 为提高分布式驱动电动智能汽车在自主循迹过程中关键参数的估计精度并降低模型不确定性对控制
系统鲁棒性的影响,本文中提出了一种基于观测器的自适应滑模路径跟踪控制策略。首先,针对难以直接精确测量
的车辆纵、侧向速度,建立了 5 输入 3 输出 3 状态的状态估计系统,并采用最小模型误差准则以降低估计过程轮胎的
非线性特性带来的观测模型误差。接着,基于运动学模型,计算出了路径跟踪期望横摆角速度响应,并采用自适应
滑模算法实现主动转向控制。考虑线控转向系统的潜在失效风险,引入径向基神经网络对系统不确定性进行在线
估计。同时,设计了直接横摆稳定控制器并采用最优转矩分配策略,进一步提高车辆的稳定性。最后,对车辆状态
估计和路径跟踪进行了 Carsim/Matlab 联合仿真,结果表明:基于最小模型误差准则的观测器能取得较可靠的估计结
果,路径跟踪控制器能保证车辆具有较好的跟踪精度和鲁棒性。
关键词:路径跟踪;最小模型误差;自适应滑模控制;径向基神经网络
Path Tracking Control of Intelligent Vehicle Based on Minimal Model Error Estimation
Ren Yue
1
,Ji Jie
1
,Zhao Ying
1
,Liang Yixiao
2
& Zheng Ling
2
1. College of Engineering and Technology,Southwest University,Chongqing 400715;
2. College of Automobile Engineering,Chongqing University,Chongqing 400044
[Abstract] To enhance the estimation accuracy of key parameters and reduce the effects of model uncertain⁃
ty on the robustness of control system in the autonomous path tracking process of distributed⁃drive intelligent elec⁃
tric vehicle,an observer⁃based adaptive sliding mode path tracking control strategy is proposed in this paper. First⁃
ly,in view of the difficulty in directly and accurately measuring the longitudinal and lateral speeds,a state estima⁃
tion system with 5 inputs,3 outputs and 3 states is established,and the minimal model error criterion is adopted to
reduce the error of observation model caused by the nonlinear feature of tire. Then based on kinematic model,the
desired yaw rate response of path tracking is calculated,the sliding mode algorithm is employed to achieve active
steering control,and with consideration of the potential failure risk of steer⁃by⁃wire system,the RBF neural network
is introduced to perform an online estimation on system uncertainty. Meanwhile,the direct yaw controller is de⁃
signed with optimal torque distribution strategy used to further improve the stability of vehicle. Finally,a Carsim/
Matlab co⁃simulation is conducted on vehicle state estimation and path tracking. The results demonstrate that the ob⁃
server based on minimal model error criterion can get more reliable estimation results and the path tracking control⁃
ler can ensure the vehicle have higher tracking accuracy and robustness.
Keywords:path tracking;minimal model error;adaptive sliding mode control;RBF neural network
前言
随着传感器技术、芯片算力和人工智能技术的
快速发展,以智能化、电动化、网联化、共享化为代表
的“新四化”成为了汽车工业前沿技术的发展趋势。
doi:10.19562/j.chinasae.qcgc.2021.04.016
* 国家自然科学基金面上项目(51875061)、重庆市自然科学基金面上项目(cstc2020jcyj⁃msxmX0496)和中央高校基本业
务费(SWU119021)资助。
原稿收到日期为 2020 年 11 月 16 日,修改稿收到日期为 2021 年 1 月 27 日。
通信作者:郑玲,教授,博士,E⁃mail:zling@cqu. edu. cn。