# Modelling COVID-19 dynamics and potential for herd immunity by vaccination in Austria, Luxembourg and Sweden
## Description:
This code represents the implementation of our extended SEIR model with ICU, hospital, recovering, death and vaccination. With this code, we generated the results and simulations of the manuscript [1] published on Journal of Theoretical Biology and available at https://doi.org/10.1016/j.jtbi.2021.110874.
## Structure of the code (Pseudocode):
1) Importing dataset
2) Computing seven days moving average
3) Creation of a calender for the plots
4) If needed: part for fitting procedure of the prevelance data in order to find a function p1
5) Just for Sweden: fitting procedure in order to find a p2 function to describe the behavior
6) ODE system based on SEIR
7) Introduction of social interaction function as a step-wise function
8) Solving of ODE system
9) Plotting and simulation of three different social interaction-scenarios (cumulative cases, daily cases, death, ICU and hospital)
10) Likelihood function for the different waves
11) Parallel MCMC
12) Gelman-Rubin diagnostic
13) 2D density plot
14) Fold change plot
15) Vaccination part with different vaccination strategies
16) Simulation of different vaccination scenarios
17) Heat map for herd immunity by April
18) Heat map for herd immunity over time
## Table of Contents:
This repository contains different types of formats. We have different excel sheets which contain the data until 15th December.
- The excel file: Sweden_data.xlsx contains the data for Sweden until 15th December.
- The excel file : Austria.xlsx contains the data for Austria until 15th December.
- The excel file: Lux-trial_15December.xlsx contains the data for Luxembourg until 15th December.
- The Jupyter notebook: Luxembourg_Residents_Fit_1st_and_2nd_wave_Optimize_and_MCMC_ParallelFullChains.ipynb is the code for Luxembourg.
- The Jupyter notebook: new_model_for_Sweden_minimize-latest-version.ipynb is the code for Sweden.
- The Jupyter notebook: Austria_main_model.ipynb is the code for Austria.
## How to run the scripts
To run our code:
- Download the full content of the directory containing this README file.
- Make sure you have installed Jupyter (we developed the code under version: jupyter-notebook : 6.1.4, so we suggest this or subsequent versions). Additionally, the code has been tested on macOS Sierra 10.12.6 and should run on every OS.
- Open Jupyter.
- Select the script corresponding to the analysis you are interested in running, and run it.
We used the following libraries and version of the libraries :
- sys==Python BuiltIn
- xlrd==1.2.0
- seaborn==0.9.0
- scipy==1.5.2
- pymcmcstat==1.9.0
- pymc3==3.8
- pandas==1.1.1
- numpy==1.19.1
- mcmcplot==1.0.1
- matplotlib==3.3.1
- lmfit==1.0.1
More information of what concretly is used in relation to Jupyter:
- jupyter core : 4.6.3
- jupyter-notebook : 6.1.4
- qtconsole : 4.7.6
- ipython : 5.1.0
- ipykernel : 5.3.4
- jupyter client : 6.1.6
- jupyter lab : 2.2.8
- nbconvert : 5.4.1
- ipywidgets : 7.5.1
- nbformat : 5.0.7
- traitlets : 4.3.3
## Credits
To use our original or adapted codes, please cite our work https://doi.org/10.1016/j.jtbi.2021.110874 as [1], see reference at the end of this document.
The Jupyter notebook code present in this directory has been written by Françoise Kemp and Stefano Magni, the overall project received contributions from Daniele Proverbio, Laurent Mombaerts, Atte Aalto, Aymeric Fouquier d'Hérouël, Andreas Husch, Christophe Ley, Jorge Gonçalves and Alexander Skupin. This work can be found as a paper in the manuscript published in 2021 on Journal of Theoretical Biology https://doi.org/10.1016/j.jtbi.2021.110874 and titled "Modelling COVID-19 dynamics and potential for herd immunity by vaccination in Austria, Luxembourg and Sweden". The first version of this work appeared on MedrXiv in January 2021 as preprint: https://doi.org/10.1101/2020.12.31.20249088.
[1] Françoise Kemp, Daniele Proverbio, Atte Aalto, Laurent Mombaerts, Aymeric Fouquier d’Hérouël, Andreas Husch, Christophe Ley, Jorge Gonçalves, Alexander Skupin, Stefano Magni, "Modelling COVID-19 dynamics and potential for herd immunity by vaccination in Austria, Luxembourg and Sweden", Journal of Theoretical Biology, Volume 530, 2021, 110874, ISSN 0022-5193, https://doi.org/10.1016/j.jtbi.2021.110874
![avatar](https://profile-avatar.csdnimg.cn/88719db48d5148c896073d479f2ac0ea_s44359487yad.jpg!1)
yava_free
- 粉丝: 5623
- 资源: 2109
最新资源
- 基于C++语言的简单集装箱放置优化问题实训设计源码
- (源码)基于Arduino的WiFi信号强度检测仪.zip
- 基于LQR、模糊PID和滑模控制的Carsim与Simulink联合仿真:横摆稳定性控制系统设计与实现,基于LQR模糊PID滑模控制的横摆稳定性系统:综合跟踪理想横摆角速度与抑制质心侧偏角的综合控制策
- 修复U8+V13.0报错:91 未设置对象变量或 With block 变量
- 基于Vue框架开发的2024年12月3日实训蛋糕商城移动端项目设计源码
- 基于JavaScript和Vue的咖啡馆智能客服系统设计源码
- 基于需求响应的区域综合能源系统双层优化调度策略与求解算法研究:MATLAB+Yalmip+Cplex协同应用,基于需求响应的区域综合能源系统双层优化调度策略及其实施过程解析:通过MATLAB结合Yal
- (源码)基于STM32和FreeRTOS的实时任务管理系统.zip
- 基于Vue框架的体育管理系统前端设计源码
- 基于HTML、JavaScript、CSS的浙工大日程会议系统设计源码
- 基于COMSOL软件的冻土水热力耦合模型代做服务:复现白青波与秦晓同模型的深度解析与实战应用,一年总时长计算解决方案,基于COMSOL软件的冻土水热力耦合模型代做服务:复现白青波、秦晓同模型,实现路基
- 基于C语言的遥感影像模式识别算法设计与实现源码
- XR3DI Rendering Engine - Spectral Edition 1.21 光谱渲染器
- (源码)基于Python的RISCV和ARM架构二进制代码控制流完整性工具.zip
- 基于JavaScript的电子意见箱v2版本设计源码
- 初学者必备的BUCK DCDC转换器学习指南:基于TSMC18工艺恒定时间控制,涵盖设计仿真、原理说明与参考论文,初学者友好型Buck DCDC转换器:基于TSMC18工艺,恒定时间控制,电压环路设计
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)