# Phase-Detection Probe Simulator for Turbulent Bubbly Flows
This is the repository of the Phase-Detection Probe Simulator for Turbulent Bubbly Flows (pdp-sim-tf) Software.
This repository is structured as follows:
- **doc:** Any documentation of pdp-sim-tf (development, testing, application, etc.) is collected here.
- **dataio:** H5 file handling tools (reader/writer).
- **schemadef:** JSON schemas.
- **tests:** Unit tests, feature tests, model tests.
- **tools:** Python scripts for building and testing.
- **Pipfile:** Definition of the Python environment via *pipenv*.
- **stsg_ssg.py:** Stochastic Timeseries Generator and Synthetic Signal Generator (STSG-SSG).
- **stsg_ssg_functions.py:** Functions used by the STSG-SSG.
- **mssp.py:** Multi-Sensor Signal Processing (MSSP).
- **run_pdp_sim_tf.py:** Script for running the various steps of a phase-detection probe simulations.
## Getting Started
### Prerequisites
The pdp-sim-tf requires the following dependencies:
- numpy==1.26.1
- pandas==2.1.1
- h5py==3.10.0
- joblib==1.3.2
- jsonschema==4.19.1
- matplotlib==3.8.0
- pathlib==1.0.1
- scipy==1.11.3
### Installation
To install pdp-sim-tf, follow these steps:
1. Clone this repository to your local machine:
```bash
git clone https://gitlab.ethz.ch/vaw/public/pdp-sim-tf.git
```
2. Navigate to the cloned directory:
```bash
cd pdp-sim-tf
```
We recommend running pdp-sim-tf in a virtual python environment using pipenv. The installation of pipenv is described in the [documentation](doc/user/setup_python_environment.md).
3. Install the required dependencies using pipenv:
```bash
pipenv install
```
4. Activate the virtual environment:
```bash
pipenv shell
```
5. You're ready to use pdp-sim-tf!
## Usage
pdp-sim-tf can be used for simulating phase-detection probe measurements in turbulent bubbly flows.
### Running the code
In order to run a simulation of phase-detection probe measurements in turbulent bubbly flows, create a new folder for the simulation and add a JSON configuration file specifying the flow properties, probe characteristics and signal post-processing algorithm. Have a look at the examples under [tests](tests) for the structure of the configuration file.
pdp-sim-tf is based on a modular workflow. The basic steps of a simulation include:
- Generating a 3-D stochastic velocity time series based on the Langevin equations.
- Generating the synthetic signal by tracking the movement of bubbles with respect to the sensors of the phase-detection probe
- Running a signal processing algorithm to recover flow properties, such as velocities and void fractions.
A detailed description of the workflow can be found in the peer-reviewed publication (tba).
#### Generating a 3-D stochastic velocity time series
A 3-D stochastic velocity time series can be generated with the Stochastic Time Series Generation and Synthetic Signal Generation (STSG-SSG) Python script `stsg_ssg.py`, using the `timeseries` keyword for the `run` flag (-r). The path to the simulation folder containing the configuration JSON file (config.json) must be provided via command line argument.
```shell
python stsg_ssg.py -r timeseries path/to/simulation
```
#### Generating the synthetic signal
The synthetic signal can be generated with the Stochastic Time Series Generation and Synthetic Signal Generation (STSG-SSG) Python script `stsg_ssg.py`, using the `signal` keyword for the `run` flag (-r). The path to the simulation folder containing the configuration JSON file (config.json) must be provided via command line argument.
```shell
python stsg_ssg.py -r signal path/to/simulation
```
#### Processing the synthetic signal
The synthetic signal can be processed with the Multi-Sensor Signal Processing (MSSP) Python script `mssp.py`. The path to the simulation folder containing the configuration JSON file (config.json) must be provided via command line argument.
```shell
python mssp.py path/to/simulation
```
## Support
For support, bug reports, or feature requests, please open an issue in the [issue tracker](https://gitlab.ethz.ch/vaw/multiphade/mpd/-/issues) or contact Matthias Bürgler at <buergler@vaw.baug.ethz.ch>.
## Authors and acknowledgment
This software is developed by Matthias Bürgler in collaboration and under the supervision of Dr. Daniel Valero, Dr. Benjamin Hohermuth, Dr. David F. Vetsch and Prof. Dr. Robert M. Boes. Matthias Bürgler and Dr. Benjamin Hohermuth were supported by the Swiss National Science Foundation (SNSF) [grant number 197208].
The code is inspired by previously developed stochastic bubble generators ([Bung & Valero, 2017](#References); [Valero et al., 2019](#References); [Kramer, 2019](#References); [Kramer et al., 2019](#References); [Bürgler et al., 2022](#References))).
## Copyright notice
(c)2024 ETH Zurich, Matthias Bürgler, Daniel Valero, Benjamin Hohermuth, David F. Vetsch, Robert M. Boes, D-BAUG, Laboratory of Hydraulics, Hydrology and Glaciology (VAW)
## License
This project is licensed under the GNU General Public License v3.0 - see the [LICENSE](LICENSE) file for details.
## References
Bung, D. B., & Valero, D. 2017. FlowCV-An open-source toolbox for computer vision applications in turbulent flows. In *Proceedings 37th IAHR World Congress*, Kuala Lumpur, Malaysia, pp. 5356-5365.
Bürgler, M., Hohermuth, B., Vetsch, D. F., & Boes, R. M. 2022. Comparison of Signal Processing Algorithms for Multi-Sensor Intrusive Phase-Detection Probes. In *Proceedings 39th IAHR World Congress*, Granada, Spain, International Association for Hydro-Environment Engineering and Research, pp. 5094-5103.
Kramer, M. 2019. Particle size distributions in turbulent air-water flows. In *E-Proceedings of the 38th IAHR World Congress*, pp. 5722-5731.
Kramer, M., Valero, D., Chanson, H., & Bung, D. B. 2019. Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique. *Experiments in Fluids*, 60(1), 2.
Valero, D., Kramer, M., Bung, D.B., & Chanson, H. 2019. A stochastic bubble generator for air water flow research. In *E-Proceedings of the 38th IAHR World Congress*. Panama City, Panama, pp. 5714–5721.
## Citation
If you use this package in academic work, please consider citing our work (tba).
没有合适的资源?快使用搜索试试~ 我知道了~
蒙特卡洛模拟两相流气泡pdp-sim-tbf-master.zip
共232个文件
dat:118个
py:43个
json:25个
需积分: 5 0 下载量 104 浏览量
2024-09-09
08:23:18
上传
评论
收藏 53.23MB ZIP 举报
温馨提示
蒙特卡洛模拟两相流气泡pdp-sim-tbf-master.zip
资源推荐
资源详情
资源评论
收起资源包目录
蒙特卡洛模拟两相流气泡pdp-sim-tbf-master.zip (232个子文件)
SPR.csv 3KB
R12max.csv 3KB
U.csv 3KB
binary_signal_signal.dat 64.85MB
binary_signal_signal.dat 40.53MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
binary_signal_signal.dat 32.42MB
flow_data_probe_location.dat 24.32MB
flow_data_probe_location.dat 24.32MB
binary_signal_signal.dat 16.21MB
binary_signal_signal.dat 16.21MB
binary_signal_signal.dat 16.21MB
binary_signal_time.dat 8.11MB
binary_signal_time.dat 8.11MB
binary_signal_time.dat 8.11MB
binary_signal_time.dat 8.11MB
binary_signal_time.dat 8.11MB
binary_signal_time.dat 8.11MB
binary_signal_time.dat 8.11MB
binary_signal_time.dat 8.11MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_trajectory.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_trajectory.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_trajectory.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 4.86MB
flow_data_fluid_velocity.dat 2.43MB
flow_data_fluid_trajectory.dat 2.43MB
flow_data_bubbles_mean_velocity.dat 699KB
flow_data_bubbles_size.dat 699KB
flow_data_fluid_velocity.dat 498KB
flow_data_fluid_trajectory.dat 498KB
flow_data_bubbles_size.dat 350KB
flow_data_bubbles_mean_velocity.dat 350KB
flow_data_bubbles_arrival_times.dat 233KB
reconstructed_bubbles_velocity.dat 176KB
flow_data_bubbles_mean_velocity.dat 153KB
flow_data_bubbles_size.dat 153KB
flow_data_bubbles_mean_velocity.dat 129KB
flow_data_bubbles_size.dat 129KB
reconstructed_bubbles_interaction_times.dat 117KB
reconstructed_bubbles_diameters.dat 117KB
flow_data_bubbles_arrival_times.dat 117KB
flow_data_bubbles_mean_velocity.dat 79KB
flow_data_bubbles_size.dat 79KB
reconstructed_bubbles_velocity.dat 55KB
flow_data_bubbles_mean_velocity.dat 55KB
flow_data_bubbles_size.dat 55KB
flow_data_bubbles_mean_velocity.dat 55KB
flow_data_bubbles_size.dat 55KB
flow_data_bubbles_size.dat 55KB
flow_data_bubbles_mean_velocity.dat 55KB
reconstructed_bubbles_velocity.dat 52KB
reconstructed_bubbles_velocity.dat 52KB
flow_data_bubbles_arrival_times.dat 51KB
flow_data_bubbles_arrival_times.dat 43KB
reconstructed_bubbles_diameters.dat 37KB
reconstructed_bubbles_interaction_times.dat 37KB
reconstructed_bubbles_interaction_times.dat 35KB
reconstructed_bubbles_diameters.dat 35KB
reconstructed_bubbles_interaction_times.dat 35KB
reconstructed_bubbles_velocity.dat 34KB
reconstructed_bubbles_velocity.dat 34KB
flow_data_bubbles_arrival_times.dat 26KB
reconstructed_bubbles_interaction_times.dat 26KB
reconstructed_bubbles_interaction_times.dat 26KB
reconstructed_bubbles_interaction_times.dat 23KB
reconstructed_bubbles_diameters.dat 23KB
reconstructed_bubbles_interaction_times.dat 23KB
reconstructed_bubbles_diameters.dat 23KB
flow_data_bubbles_arrival_times.dat 18KB
flow_data_bubbles_arrival_times.dat 18KB
flow_data_bubbles_arrival_times.dat 18KB
reconstructed_bubbles_velocity_c0.dat 13KB
reconstructed_bubbles_velocity_c0.dat 13KB
reconstructed_bubbles_interaction_times.dat 3KB
reconstructed_bubbles_velocity_c0.dat 2KB
flow_data_fluid_reynold_stresses.dat 153B
flow_data_fluid_reynold_stresses.dat 153B
flow_data_fluid_reynold_stresses.dat 153B
flow_data_fluid_reynold_stresses.dat 153B
flow_data_fluid_reynold_stresses.dat 153B
共 232 条
- 1
- 2
- 3
资源评论
蜡笔小流
- 粉丝: 2394
- 资源: 1245
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功