# End-to-end-DRL-for-FJSP
#---------------------------------------------------------------------------------
2023/02/15 I've revised the 'PPOwithValue.py' so that it's suitable for a higher version of Pytorch.
2022/11/03 torch == 1.4.0
2022/09/24 I've uploaded the FJSP_realworld files, you can download it to run the 'validation_realWorld.py' to test on bechmark instances. In particular, you can download more bechmark instances and saved models to test, and in this project I only upload one saved model and benchmark.
You can download the "FJSP_MultiPPO" project to run 'PPOwithValue' file to train the policies, run the 'validation' file to test/validate on random generated instances.
You can download the other project named 'FJSP-benchmarks' in my github account to test the trained model on real-world instances.
Anyway, is there a bigger headache than tidying up code? For open access source, please cite the work correctly if it is helpful to you!!!
#----------------------------------------------------------------------------------
2022/09/12 Some issues are resolveed, please download the latest code. If you have any question please feel free to mail to me via: kunlei@my.swjtu.edu.cn.
#----------------------------------------------------------------------------------
This is the code for our published paper: 'A Multi-action Deep Reinforcement Learning Framework for Flexible Job-shop Scheduling Problem'; Everyone is welcome to use this code and cite our paper:
{Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, Liansheng Tang,
A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem,
Expert Systems with Applications,
Volume 205,
2022,
117796,
ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2022.117796.
(https://www.sciencedirect.com/science/article/pii/S0957417422010624)}
This work can be extend to solve other type of scheduling problems which can be represented by disjunctive graph, e.g., flow shop scheduling problem, dynamic FJSP etc., or FJSP with other objective, e.g., mean comletion time and sequence dependence & setup time.
The proposed multi-PPO algorithm can be extend to solve other multi-action decision needed combinatorial optimization problem.
# Running the code
You can run the 'PPOwithValue' file to train the policies, run the 'validation' file to test/validate on random generated instances.
# Motivation
Most traditional methods, including exact methods based on mathematical programming and metaheuristics, cannot apply to large FJSP instances or real-time FJSP instances due to their time complexity. Some researchers have used DRL to solve combinatorial optimization problems and achieved good results, but FJSP has received less attention. Some DRL-based methods in solving FJSP are designed to select composite dispatching rules instead of directly finding scheduling solutions, whose performance depends on the design of dispatching rules. To the best of our knowledge, there is no research to solve the FJSP via multiple action end-to-end DRL framework without predetermined dispatching rules.
In this paper, we proposed a novel end-to-end model-free DRL architecture on FJSP and demonstrated that it yields superior performance in terms of solution quality and efficiency. The proposed model-free DRL architecture can be directly applied to arbitrary FJSP scenarios without modeling the environment in advance. That is to say, the transition probability distribution (and the reward function) associated with the Markov decision process (MDP) is not explicitly defined when invoking the environment. Meanwhile, based on the advantages of our design of policy networks, our architecture is not bounded by the instance size
# Graph neural network for disjunctive graph of FJSP
The disjunctive graphprovides a complete view of the scheduling states containing numerical and structural information, such as the precedence constraints, processing order on each machine, compatible machine set for each operation, and the processing time of a compatible machine for each operation. It is crucial to extract all state information embedded in the disjunctive graph to achieve effective scheduling performance. It motivates us to embed the complex graph state by exploiting a graph neural network (GNN). We used the Graph Isomorphism Network (GIN) to encode the disjunctive graph.
# Deep reinforcement learning algorithm
To cope with this kind of multi-action reinforcement problem, we proposed a multi-Proximal Policy Optimization (multi-PPO) algorithm that takes a multiple actor-critic architecture and adopts PPO as its policy optimization method for learning the two sub-policies. The PPO algorithm is a state-of-the-art policy gradient approach with an actor-critic style, which is widely used to deal with both discrete and continuous control tasks . However, the PPO algorithm cannot be directly used to handle a multi-action task since it generally contains one actor to learn one policy that can only control a single action at each timestep. By contrast, the proposed multi-PPO architecture includes two actor networks (job operation and machine encoder-decoders as the two actor networks, respectively).
# Cite us
For open access source, please cite the work correctly!!!
没有合适的资源?快使用搜索试试~ 我知道了~
multi-Proximal政策优化(multi-PPO)算法求解车间调度问题FJSP附python代码.zip
共482个文件
pth:126个
pyc:101个
py:86个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 60 浏览量
2023-06-01
07:43:39
上传
评论 4
收藏 73.21MB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
资源推荐
资源详情
资源评论
收起资源包目录
multi-Proximal政策优化(multi-PPO)算法求解车间调度问题FJSP附python代码.zip (482个子文件)
.editorconfig 603B
Behnke16.fjs 19KB
Behnke16.fjs 19KB
Behnke19.fjs 19KB
Behnke19.fjs 19KB
Behnke17.fjs 19KB
Behnke17.fjs 19KB
Behnke20.fjs 19KB
Behnke20.fjs 19KB
Behnke18.fjs 19KB
Behnke18.fjs 19KB
Behnke12.fjs 10KB
Behnke12.fjs 10KB
Behnke11.fjs 10KB
Behnke11.fjs 10KB
Behnke13.fjs 10KB
Behnke13.fjs 10KB
Behnke15.fjs 9KB
Behnke15.fjs 9KB
Behnke14.fjs 9KB
Behnke14.fjs 9KB
Behnke6.fjs 4KB
Behnke6.fjs 4KB
Behnke7.fjs 4KB
Behnke7.fjs 4KB
Behnke8.fjs 4KB
Behnke8.fjs 4KB
Behnke9.fjs 4KB
Behnke9.fjs 4KB
Behnke10.fjs 4KB
Behnke10.fjs 4KB
Behnke4.fjs 2KB
Behnke4.fjs 2KB
Behnke3.fjs 2KB
Behnke3.fjs 2KB
Behnke5.fjs 2KB
Behnke5.fjs 2KB
Behnke1.fjs 289B
Behnke2.fjs 289B
n4m9.fjs 289B
Behnke1.fjs 280B
n4m9_time.fjs 255B
HurinkVdata42.fjs 154B
HurinkVdata40.fjs 154B
HurinkVdata42.fjs 154B
HurinkVdata40.fjs 154B
Behnke2.fjs 152B
HurinkVdata39.fjs 150B
test.fjs 149B
test.fjs 149B
test.fjs 149B
HurinkVdata41.fjs 147B
HurinkVdata41.fjs 147B
n3m3_cost.fjs 142B
n3m3.fjs 142B
HurinkVdata39.fjs 139B
test.fjs 51B
.gitignore 50B
.gitignore 50B
.gitignore 50B
.gitignore 39B
测试.gv 4KB
End-to-end-DRL-for-FJSP-main.iml 522B
FJSP_MultiPPO.iml 485B
FJSP_RealWorld.iml 485B
new_banben.json 236KB
new_json_data.json 187KB
new_json_data.json 187KB
new_data.json 178KB
new_data.json 131KB
new_data(1).json 49KB
new_data(1).json 49KB
new_data.json 48KB
new_data.json 48KB
text2.json 39KB
text2.json 39KB
text2.json 39KB
text3.json 38KB
text3.json 38KB
text3.json 38KB
text3.json 37KB
new.json 35KB
new.json 20KB
new.json 20KB
bechavior.json 15KB
N3M3.json 13KB
text1.json 12KB
lastfailed 89B
README.md 5KB
README.md 303B
N_30_M20_u100 52B
N_3_M3_u100 3KB
N_4_M9_u100 416B
.name 15B
.name 10B
new_data 5KB
new_data 5KB
nodeids 77B
test.png 258KB
test.png 258KB
共 482 条
- 1
- 2
- 3
- 4
- 5
资源评论
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 技术资料分享TF卡资料很好的技术资料.zip
- 技术资料分享TF介绍很好的技术资料.zip
- 10、安徽省大学生学科和技能竞赛A、B类项目列表(2019年版).xlsx
- 9、教育主管部门公布学科竞赛(2015版)-方喻飞
- C语言-leetcode题解之83-remove-duplicates-from-sorted-list.c
- C语言-leetcode题解之79-word-search.c
- C语言-leetcode题解之78-subsets.c
- C语言-leetcode题解之75-sort-colors.c
- C语言-leetcode题解之74-search-a-2d-matrix.c
- C语言-leetcode题解之73-set-matrix-zeroes.c
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功