DeepESN2019a - Deep Echo State Network Toolbox v1.1 (February 2019)
** GENERAL INFORMATION **
Deep Echo State Networks (DeepESN) extend the Reservoir Computing paradigm towards the Deep Learning framework.
Essentially, a DeepESN is a deep Recurrent Neural Network composed of a stacked composition of multiple recurrent reservoir layers, and of a linear readout layer that computes the output of the model. The deep reservoir part is left untrained after initialization, and the readout is the only part of the architecture that undergoes a training process.
All details on the DeepESN model can be found in the reference paper reported below in the CITATION REQUEST section.
Also note that DeepESNs with a single layer reduce to standard Echo State Networks (ESNs), thereby the code provided in this toolbox can also be used for standard (i.e., shallow) ESN applications.
The toolbox contains the files listed below.
- DeepESN.m: The file contains the definition of the class DeepESN (the main class in the toolbox).
- Task.m: The file contains the definition of the auxiliary class Task.
- example_DeepESN_1.m: The file contains an example of the usage of the classes in the DeepESN toolbox for the short-term Memory Capacity (MC) task.
- example_task_MC.m: The file contains an example of the usage of the methods in the Task class, including loading of (input and target) data from .csv files, and hold-out cross-validation settings.
- MC100.mat: The file contains an object of class Task, representing the information for the MC task (up to 100 reservoir units), used in the provided example code. This file contains the Task object obtained by running example_task_MC.m
- MC_input.csv, MC_target.csv: files in csv format containing the input and target data for the MC task.
All the files come with full documentation, accessible through the individual reference pages, or through the help function. E.g., for info on the DeepESN class, type 'help DeepESN' in the Matlab command window.
** CITATION REQUEST **
The DeepESN model has been proposed in the following journal paper, which represents a citation request for the usage of this toolbox:
C. Gallicchio, A. Micheli, L. Pedrelli, "Deep Reservoir Computing: A Critical Experimental Analysis", Neurocomputing, 2017, vol. 268, pp. 87-99
** FURTHER READING **
An up-to-date overview of the research developments on DeepESN can be found in:
C. Gallicchio, A. Micheli, "Deep Echo State Network (DeepESN): A brief survey", arXiv preprint arXiv:171204323, 2018
** AUTHOR INFORMATION **
Claudio Gallicchio
gallicch@di.unipi.it - https://sites.google.com/site/cgallicch/
Department of Computer Science - University of Pisa (Italy)
Computational Intelligence & Machine Learning (CIML) Group
http://www.di.unipi.it/groups/ciml/
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 1万+
最新资源
- CO2半自动焊接小车在电力变压器油箱制造中的应用.pdf
- CO2焊接飞溅产生原因与防止方法探究.pdf
- CO2焊接在起重机轨道焊接中的应用.pdf
- 基于智慧医疗系统—全部资料+高分项目+详细文档.zip
- 基于智慧医院信息管理系统HIS 全部资料+高分项目+详细文档.zip
- CO2气体保护焊横焊接头无损检测方法研究.pdf
- CO2气保焊机与焊接工艺参数的匹配.pdf
- CO2气体保护焊焊接工艺试验与应用.pdf
- 基于智慧园区管理系统:基于园区业务,深度挖掘流程与系统的关键结合点,发挥互联网的优势,系统主要实现园区的资产管理,企业服务及档案管理,园区的活动及商城的搭建。全部资料+高分项目+详细文档.zip
- Cr25Ni20耐热不锈钢的焊接工艺 - .pdf
- 基于智慧园区 园区大脑-平台管理系统全部资料+高分项目+详细文档.zip
- CRHl型动车组构架焊接制造工艺分析 - .pdf
- CRH350横梁管和连接座选材与OTC机械手焊接工艺分析 - .pdf
- CR技术在超薄焊接结构件中的研究与应用.pdf
- CSA W47.1-1992 中文版 钢结构熔化焊的公司资格 焊接.pdf
- CT20低温钛合金氩弧焊接接头显微组织及性能 - .pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈