DeepESN2019a - Deep Echo State Network Toolbox v1.1 (February 2019)
** GENERAL INFORMATION **
Deep Echo State Networks (DeepESN) extend the Reservoir Computing paradigm towards the Deep Learning framework.
Essentially, a DeepESN is a deep Recurrent Neural Network composed of a stacked composition of multiple recurrent reservoir layers, and of a linear readout layer that computes the output of the model. The deep reservoir part is left untrained after initialization, and the readout is the only part of the architecture that undergoes a training process.
All details on the DeepESN model can be found in the reference paper reported below in the CITATION REQUEST section.
Also note that DeepESNs with a single layer reduce to standard Echo State Networks (ESNs), thereby the code provided in this toolbox can also be used for standard (i.e., shallow) ESN applications.
The toolbox contains the files listed below.
- DeepESN.m: The file contains the definition of the class DeepESN (the main class in the toolbox).
- Task.m: The file contains the definition of the auxiliary class Task.
- example_DeepESN_1.m: The file contains an example of the usage of the classes in the DeepESN toolbox for the short-term Memory Capacity (MC) task.
- example_task_MC.m: The file contains an example of the usage of the methods in the Task class, including loading of (input and target) data from .csv files, and hold-out cross-validation settings.
- MC100.mat: The file contains an object of class Task, representing the information for the MC task (up to 100 reservoir units), used in the provided example code. This file contains the Task object obtained by running example_task_MC.m
- MC_input.csv, MC_target.csv: files in csv format containing the input and target data for the MC task.
All the files come with full documentation, accessible through the individual reference pages, or through the help function. E.g., for info on the DeepESN class, type 'help DeepESN' in the Matlab command window.
** CITATION REQUEST **
The DeepESN model has been proposed in the following journal paper, which represents a citation request for the usage of this toolbox:
C. Gallicchio, A. Micheli, L. Pedrelli, "Deep Reservoir Computing: A Critical Experimental Analysis", Neurocomputing, 2017, vol. 268, pp. 87-99
** FURTHER READING **
An up-to-date overview of the research developments on DeepESN can be found in:
C. Gallicchio, A. Micheli, "Deep Echo State Network (DeepESN): A brief survey", arXiv preprint arXiv:171204323, 2018
** AUTHOR INFORMATION **
Claudio Gallicchio
gallicch@di.unipi.it - https://sites.google.com/site/cgallicch/
Department of Computer Science - University of Pisa (Italy)
Computational Intelligence & Machine Learning (CIML) Group
http://www.di.unipi.it/groups/ciml/
没有合适的资源?快使用搜索试试~ 我知道了~
【预测模型-ESN预测】基于深度回声状态网络(DeepESN)实现数据回归预测附matlab代码 上传.zip
共15个文件
m:7个
txt:2个
csv:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 2 下载量 89 浏览量
2023-04-14
07:27:34
上传
评论 1
收藏 7.58MB ZIP 举报
温馨提示
1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
资源推荐
资源详情
资源评论
收起资源包目录
【预测模型-ESN预测】基于深度回声状态网络(DeepESN)实现数据回归预测附matlab代码 上传.zip (15个子文件)
【预测模型-ESN预测】基于深度回声状态网络(DeepESN)实现数据回归预测附matlab代码 上传
MC_target.csv 9.82MB
Users
gallicch
Dropbox
projects
toolbox
deepESN
sparse_matrix_num.m 476B
DeepESN2018
dev
tasks
MC100.mat 1.92MB
Task.m 4KB
DeepESN.m 25KB
example_DeepESN_1.m 5KB
说明.txt 367B
Task.m 4KB
README.txt 3KB
MC100.mat 1.92MB
仿真咨询.png 350KB
更多代码关注我.png 114KB
DeepESN.m 17KB
MC_input.csv 50KB
example_task_MC.m 1KB
共 15 条
- 1
资源评论
- m0_743968242024-01-16感谢资源主的分享,这个资源对我来说很有用,内容描述详尽,值得借鉴。
- 2401_837886922024-04-24发现一个宝藏资源,资源有很高的参考价值,赶紧学起来~
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 本资源库是关于“Java Collection Framework API”的参考资料,是 Java 开发社区的重要贡献,旨在提供有关 Java 语言学院 API 的实践示例和递归教育关系 .zip
- 插件: e2eFood.dll
- 打造最强的Java安全研究与安全开发面试题库,帮助师傅们找到满意的工作.zip
- (源码)基于Spark的实时用户行为分析系统.zip
- (源码)基于Spring Boot和Vue的个人博客后台管理系统.zip
- 将流行的 ruby faker gem 引入 Java.zip
- (源码)基于C#和ArcGIS Engine的房屋管理系统.zip
- (源码)基于C语言的Haribote操作系统项目.zip
- (源码)基于Spring Boot框架的秒杀系统.zip
- (源码)基于Qt框架的待办事项管理系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功