<div align="center">
<p>
<a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
-->
</p>
[涓枃](https://docs.ultralytics.com/zh/) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko/) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja/) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Fran莽ais](https://docs.ultralytics.com/fr/) | [Espa帽ol](https://docs.ultralytics.com/es/) | [Portugu锚s](https://docs.ultralytics.com/pt/) | [啶灌た啶ㄠ啶︵](https://docs.ultralytics.com/hi/) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar/)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 馃殌 NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
没有合适的资源?快使用搜索试试~ 我知道了~
基于 YOLOV5 对29类细胞检测【数据集+代码+训练好的权重】
共2000个文件
txt:1170个
jpg:667个
py:51个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 150 浏览量
2024-07-03
13:30:05
上传
评论
收藏 31.51MB 7Z 举报
温馨提示
代码经多次测试,可以直接运行 图像分辨率为800*800的大分辨率RGB图片,数据集为细胞检测。标注的边界框完整,每张图像均有数个目标。 【关于数据集】 训练集datasets-images-train:934张图片和934个标签txt文件组成 验证集datasets-images-val:233张图片和233个标签txt文件组成 【yolov5】项目总大小:32 MB 训练过程中会生成验证集的混淆矩阵,PR曲线、F1曲线以及训练好的两个权重等等 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html
资源推荐
资源详情
资源评论
收起资源包目录
基于 YOLOV5 对29类细胞检测【数据集+代码+训练好的权重】 (2000个子文件)
CITATION.cff 393B
Dockerfile 3KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.gitattributes 75B
.gitignore 50B
yolov5.iml 452B
tutorial.ipynb 42KB
bus.jpg 476KB
zidane.jpg 165KB
Klen-3-_jpg.rf.22a35e3aabd510993e5a6c0b5e0af078.jpg 153KB
Ivy_2sht_jpg.rf.8f322c9e91776f60ac022c894ea0093a.jpg 144KB
Klen2_jpg.rf.ec615ee5191457c53ee10684b6bc0131.jpg 136KB
Klen_I_2_Berezy_jpg.rf.a70f33e6076578d4cf455201e65de240.jpg 126KB
Bereza2_jpg.rf.a770f33be0882ff6c498e850a7b04a4d.jpg 122KB
Bereza_I_Klen_jpg.rf.f76b74ea19879b2c633f0f2f6e73d576.jpg 121KB
Bereza_jpg.rf.983458d7548b4f433e4e1a217304b7fa.jpg 119KB
Bereza4_I_Klen3_jpg.rf.5c0ac654a54194e7e76ee1fcd328dedc.jpg 106KB
-11_jpg.rf.17e8120e4c5700a3faa6fefb640cdf66.jpg 99KB
Olkha_I_Topol_jpg.rf.2a8bb9ccc91d654dad910a3b49268a42.jpg 96KB
-18_jpg.rf.0b1e2c4a8aec107e9c079b39a23d3ef8.jpg 88KB
-38_jpg.rf.2fc9149479a244f4539dca8879516568.jpg 84KB
14_jpg.rf.954f503b0084b28ab50071d0db2eec2c.jpg 83KB
100_jpg.rf.a7af9e8f05f7b2d433c37597defefe2f.jpg 82KB
-13-_jpg.rf.141439b8a55a4599659c39315bf6c3d3.jpg 80KB
120_jpg.rf.5ccc2c026f8ea5a5143f2a062de569fe.jpg 77KB
30_jpg.rf.7aa3971ee1acca48aa18b0386dac7032.jpg 76KB
178_jpg.rf.d238de28e6bf40de2c448801e2439215.jpg 74KB
86_jpg.rf.66d4c2ce57fcdec188ae1c391b47fa8c.jpg 73KB
176_jpg.rf.bd6a2cfd51eb292da324a6b9b384f659.jpg 73KB
47_jpg.rf.af3d3046bafc6f03b2c28c27e6defb82.jpg 73KB
8_jpg.rf.801831e3f2c766ce6ca146499cf40cf4.jpg 73KB
-1_jpg.rf.5c9201813789b7b5d727c517f68e075c.jpg 73KB
548_png.rf.7c89f4231faa2d5fdf4b1f2a350f75b4.jpg 71KB
-10_jpg.rf.26326e91d08e32332543e0a60e5b13e2.jpg 71KB
103_jpg.rf.1b4f49cd1a177187816d79264b1ba208.jpg 71KB
-12_jpg.rf.470141e8bf07c716ec6482ad91547e0b.jpg 71KB
-3_jpg.rf.7de872e8adf86d39914ac47f1cd41280.jpg 70KB
807_png.rf.9bd8f4ad20ddcb50a357e51c5751b981.jpg 69KB
174_jpg.rf.3141e0b60f32bc1a295e6ac8268c9c03.jpg 69KB
Topol3_jpg.rf.bdd20eaef316f95e917fdb44db2917e5.jpg 69KB
762_png.rf.55bae202da789ecd178c647df9fc5c44.jpg 68KB
777_png.rf.1d95bbec5a27d620c7d1bed62702770b.jpg 68KB
-15_jpg.rf.b8317f8996db7851ce9b8c690cd50176.jpg 68KB
56_jpg.rf.6f3e6b4003c0a8377bcdbd2aadb5beff.jpg 68KB
74_jpg.rf.23771342fe20761a8ac74b90c13c4d76.jpg 67KB
-28-29_jpg.rf.6f17dc81e502e51782ab51324e4719af.jpg 67KB
198_jpg.rf.1d6be5e58345c3f49d76fecd829fd3b6.jpg 67KB
57_jpg.rf.ab94eaabb06c45e97a907c945e5c354b.jpg 66KB
35_jpg.rf.ea534dd22621c9c186ea51029b2f4e17.jpg 66KB
137_jpg.rf.6437807d90c16ae649909e2bb530fec3.jpg 65KB
100_jpg.rf.9d84d892e2341d286f7a14d4d4550835.jpg 65KB
139_jpg.rf.fe1ea91503146c7fe940fe49bd801ccc.jpg 64KB
50_jpg.rf.954ba90c981ba23c876c4603e43b0179.jpg 64KB
38_jpg.rf.ad598d890b17599e25b95bf4b25def34.jpg 64KB
83_jpg.rf.006088bfa376a6d52aa57abab0d041d4.jpg 63KB
116_jpg.rf.adc99a568dc86b0d29365f0f04fa85c0.jpg 63KB
148_jpg.rf.33923926dd470d4aa27f515deac7c094.jpg 63KB
544_png.rf.2a01abec8637d6b28ce41f9987acc4d5.jpg 62KB
802_png.rf.41264fee01f7f45f5b2c2a5f535136f4.jpg 62KB
-6_jpg.rf.96ef454b076d6fb8bc7b7a8916b8e64b.jpg 62KB
808_png.rf.632ab6760216804eb982f46977e2005d.jpg 62KB
774_png.rf.bb7127cf4388b240a1a120d31f49f09e.jpg 62KB
9_jpg.rf.f1e07a52c7835a5b192b99f5259605d2.jpg 62KB
159_jpg.rf.83c2942811f95e560ff762360d40f024.jpg 61KB
145_jpg.rf.9aaeba75e2d1f8dc0aaf826c394f3387.jpg 60KB
785_png.rf.ac7db25453a26fd648588d0b2f0413c6.jpg 60KB
46_jpg.rf.d8657c0417cc75c214b7f12bbc47f03c.jpg 59KB
767_png.rf.62d2dc75c2d89aaa241b85a2e8597aa0.jpg 59KB
Bereza_3_jpg.rf.5cb50aef0bd4a9620f56d4c3ac90b823.jpg 59KB
-7_jpg.rf.86188c395ede455c3a02d52d9da1e00a.jpg 59KB
781_png.rf.5245f0951441a485e9614c41b85d14f0.jpg 59KB
-30_jpg.rf.8a58602fb3bfb44f9cdb62027fe0cb09.jpg 58KB
20_jpg.rf.48509281044199a0650609075df5cbff.jpg 58KB
-35_jpg.rf.f2077c11ad118943cf08476db24a24b9.jpg 57KB
117_jpg.rf.36757995ef3de6cb0116f39d3ee97174.jpg 57KB
790_png.rf.0e9af21dfe3a11beb3f098fb7c12ca91.jpg 57KB
105_jpg.rf.7954ce2542fbda5b6131958f12dda90b.jpg 56KB
25_jpg.rf.6395cd60610f3d22c17a140e828f7020.jpg 56KB
92_jpg.rf.e4d346c4ceb0c22d960485741d0b720e.jpg 55KB
43_jpg.rf.5854be0f9a7075ebdfd0c48b7b821b20.jpg 55KB
106_jpg.rf.d6e4eb02ed47a7e05f7020744f44ba3d.jpg 55KB
799_png.rf.a256c17a32f2635dfc136fa5308f1424.jpg 55KB
803_png.rf.7294813a2ef9804183599963380ecba5.jpg 55KB
21_jpg.rf.d0bf08e56674077c4a978ef64d6eeba1.jpg 54KB
123_jpg.rf.2fff722285e1a1d4c3434ed05c4d102e.jpg 54KB
53_jpg.rf.a0ae5c3843e309259c9101495f24957f.jpg 54KB
130_jpg.rf.9922f8468019cb7197ee1057d7e8cd9c.jpg 54KB
56_jpg.rf.02c35a6da2a79f277321f1916c558189.jpg 53KB
104_jpg.rf.08d3d9d9e75a49175b481db49922440f.jpg 53KB
775_png.rf.77272c32095f6aa869ebe440f120890d.jpg 53KB
71_jpg.rf.14ebd2b3a4e28fe8bbd75fd2618313c9.jpg 53KB
532_png.rf.a21c2b08124aedbe0a45393d23fd8bbe.jpg 53KB
196_jpg.rf.3c1b34032e366b2e2e0378a9a33be345.jpg 52KB
107_jpg.rf.483a66e723089ae32874c2021ce060b5.jpg 52KB
114_jpg.rf.a0fdfa3e4255005dc1df56341178db92.jpg 52KB
-24_jpg.rf.c366469ebac4d6a35f113813bfa63295.jpg 52KB
121_jpg.rf.c8e4eb3f6a8ca25e59fb5e0ddec62b92.jpg 52KB
773_png.rf.81fdd029990b5d1b5669264e6f84b9a0.jpg 52KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2128
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功