<div align="center">
<p>
<a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
-->
</p>
[涓枃](https://docs.ultralytics.com/zh/) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko/) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja/) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Fran莽ais](https://docs.ultralytics.com/fr/) | [Espa帽ol](https://docs.ultralytics.com/es/) | [Portugu锚s](https://docs.ultralytics.com/pt/) | [啶灌た啶ㄠ啶︵](https://docs.ultralytics.com/hi/) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar/)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 馃殌 NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于YOLOV5 对大型海上目标检测数据集的目标检测实战项目,包含代码、数据集、训练好的权重参数,经测试,代码可以直接使用 【数据集介绍】海上目标图像数据,类别:邮轮、小鸟、鱼、帆船等共10个类别 训练集datasets-images-train:6894张图片和6894个标签txt文件组成 测试集datasets-images-val:1723张图片和1723个标签txt文件组成 【yolov5】项目总大小:733MB 项目迭代了100个epoch,在runs目录下保存了训练结果,训练最好的精度map0.5=0.875,map0.5:0.95=0.66。训练过程中会生成验证集的混淆矩阵,PR曲线、F1曲线等等runs/detect目录下保存了网络推理训练集的全部结果,推理效果很好 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html
资源推荐
资源详情
资源评论
收起资源包目录
YOLOV5 实战项目:大型海上图像目标检测数据集 (2000个子文件)
optimizer_config.json 2KB
README.zh-CN.md 41KB
README.md 41KB
README.md 11KB
README.md 11KB
CONTRIBUTING.md 5KB
README.md 2KB
dataloaders.py 59KB
general.py 50KB
export.py 41KB
train.py 34KB
val.py 24KB
torch_utils.py 21KB
__init__.py 21KB
val.py 20KB
plots.py 20KB
__init__.py 20KB
augmentations.py 18KB
predict.py 16KB
metrics.py 15KB
dataloaders.py 13KB
loss.py 11KB
clearml_utils.py 9KB
loss.py 9KB
hubconf.py 9KB
wandb_utils.py 8KB
autoanchor.py 7KB
hpo.py 7KB
plots.py 6KB
general.py 6KB
metrics.py 5KB
downloads.py 5KB
hpo.py 5KB
comet_utils.py 5KB
activations.py 5KB
triton.py 4KB
augmentations.py 4KB
__init__.py 3KB
autobatch.py 3KB
callbacks.py 3KB
restapi.py 2KB
resume.py 1KB
example_request.py 368B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
get_imagenet.sh 2KB
get_coco.sh 2KB
userdata.sh 1KB
mime.sh 780B
get_imagenet1000.sh 742B
get_imagenet100.sh 738B
get_imagenet10.sh 734B
download_weights.sh 641B
get_coco128.sh 619B
boat(326).txt 1016B
fish(184).txt 516B
m(866).txt 512B
boat(367).txt 501B
boat(328).txt 455B
boat(601).txt 426B
boat(171).txt 415B
boat(398).txt 385B
m(434).txt 376B
w(79).txt 372B
boat(178).txt 358B
boat(426).txt 357B
fish(406).txt 307B
fish(440).txt 307B
w(300).txt 306B
m(633).txt 306B
fish(465).txt 299B
boat(594).txt 298B
boat(582).txt 289B
boat(187).txt 288B
fish(155).txt 287B
m(1001).txt 271B
boat(521).txt 270B
m(1282).txt 268B
boat(285).txt 265B
fish(62).txt 265B
m(377).txt 264B
boat(442).txt 263B
2(1417).txt 263B
boat(232).txt 255B
boat(213).txt 243B
boat(1357).txt 240B
fish(1352).txt 238B
m(187).txt 231B
2(1377).txt 230B
fish(56).txt 230B
m(1138).txt 229B
fish(523).txt 229B
fish(255).txt 229B
boat(175).txt 229B
m(795).txt 227B
fish(135).txt 224B
huolun(356).txt 220B
boat(461).txt 219B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- 2401_840772392024-04-10支持这个资源,内容详细,主要是能解决当下的问题,感谢大佬分享~
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2092
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功