<div align="center">
<p>
<a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
-->
</p>
[涓枃](https://docs.ultralytics.com/zh/) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko/) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja/) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Fran莽ais](https://docs.ultralytics.com/fr/) | [Espa帽ol](https://docs.ultralytics.com/es/) | [Portugu锚s](https://docs.ultralytics.com/pt/) | [啶灌た啶ㄠ啶︵](https://docs.ultralytics.com/hi/) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar/)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 馃殌 NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于YOLOV5 对大型密集人群、车辆图像数据集的目标检测实战项目,包含代码、数据集、训练好的权重参数,经测试,代码可以直接使用 项目大小:907MB 项目迭代了100个epoch,在runs目录下保存了训练结果,在runs/detect目录下保持了网络推理训练集的全部结果,推理效果还不错 关于yolov5训练脚本的参数介绍:https://blog.csdn.net/qq_44886601/article/details/136503688 关于yolov5推理脚本的参数介绍: https://blog.csdn.net/qq_44886601/article/details/136392838
资源推荐
资源详情
资源评论
收起资源包目录
YOLOV5 实战项目:大型密集人群、车辆图像目标检测数据集(VisDrone 数据集) (2000个子文件)
optimizer_config.json 2KB
README.zh-CN.md 41KB
README.md 41KB
README.md 11KB
README.md 11KB
CONTRIBUTING.md 5KB
README.md 2KB
dataloaders.py 59KB
general.py 50KB
export.py 41KB
train.py 34KB
val.py 24KB
torch_utils.py 21KB
__init__.py 21KB
val.py 20KB
plots.py 20KB
__init__.py 20KB
augmentations.py 18KB
predict.py 16KB
metrics.py 15KB
dataloaders.py 13KB
loss.py 11KB
clearml_utils.py 9KB
loss.py 9KB
hubconf.py 9KB
wandb_utils.py 8KB
autoanchor.py 7KB
hpo.py 7KB
plots.py 6KB
general.py 6KB
metrics.py 5KB
downloads.py 5KB
hpo.py 5KB
comet_utils.py 5KB
activations.py 5KB
triton.py 4KB
augmentations.py 4KB
__init__.py 3KB
autobatch.py 3KB
callbacks.py 3KB
restapi.py 2KB
resume.py 1KB
example_request.py 368B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
get_imagenet.sh 2KB
get_coco.sh 2KB
userdata.sh 1KB
mime.sh 780B
get_imagenet1000.sh 742B
get_imagenet100.sh 738B
get_imagenet10.sh 734B
download_weights.sh 641B
get_coco128.sh 619B
9999938_00000_d_0000207.txt 18KB
9999938_00000_d_0000208.txt 15KB
9999938_00000_d_0000210.txt 14KB
9999938_00000_d_0000217.txt 13KB
9999938_00000_d_0000213.txt 13KB
9999938_00000_d_0000212.txt 12KB
9999938_00000_d_0000205.txt 12KB
9999938_00000_d_0000189.txt 11KB
0000063_00500_d_0000001.txt 11KB
9999938_00000_d_0000211.txt 11KB
9999938_00000_d_0000216.txt 11KB
0000066_01097_d_0000002.txt 10KB
9999938_00000_d_0000218.txt 10KB
9999945_00000_d_0000119.txt 10KB
9999947_00000_d_0000021.txt 9KB
0000140_02477_d_0000006.txt 9KB
9999938_00000_d_0000188.txt 9KB
9999945_00000_d_0000136.txt 9KB
9999938_00000_d_0000127.txt 9KB
0000161_01584_d_0000158.txt 9KB
9999979_00000_d_0000045.txt 8KB
9999938_00000_d_0000206.txt 8KB
9999955_00000_d_0000313.txt 8KB
0000127_00002_d_0000119.txt 8KB
9999979_00000_d_0000016.txt 8KB
9999937_00000_d_0000132.txt 8KB
9999947_00000_d_0000020.txt 8KB
9999938_00000_d_0000209.txt 8KB
9999938_00000_d_0000215.txt 8KB
9999979_00000_d_0000023.txt 8KB
0000320_03950_d_0000011.txt 8KB
9999938_00000_d_0000220.txt 8KB
9999947_00000_d_0000014.txt 8KB
9999938_00000_d_0000214.txt 8KB
9999979_00000_d_0000025.txt 7KB
0000279_00601_d_0000587.txt 7KB
0000127_00265_d_0000120.txt 7KB
0000063_11000_d_0000012.txt 7KB
9999938_00000_d_0000219.txt 7KB
0000295_01400_d_0000028.txt 7KB
9999938_00000_d_0000128.txt 7KB
9999947_00000_d_0000016.txt 7KB
0000137_02372_d_0000164.txt 7KB
9999966_00000_d_0000029.txt 7KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2298
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 保险箱检测51-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 五相电机邻近四矢量SVPWM模型-MATLAB-Simulink仿真模型包括: (1)原理说明文档(重要):包括扇区判断、矢量作用时间计算、矢量作用顺序及切时间计算、PWM波的生成; (2)输出部分仿
- 一对一MybatisProgram.zip
- 时变动态分位数CoVaR、delta-CoVaR,分位数回归 △CoVaR测度 溢出效应 动态 Adrian2016基于分位数回归方法计算动态条件在险价值 R语言代码,代码更数据就能用,需要修改的
- 人物检测37-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 人物检测26-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 人和箱子检测2-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 清华大学2022年秋季学期 高等数值分析课程报告
- GEE错误集-Cannot add an object of type <Element> to the map. Might be fixable with an explicit .pdf
- 清华大学2022年秋季学期 高等数值分析课程报告
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功