%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
% 训练集—
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';
M = size(P_train,2);
% 测试集—200个
N = size(T_test,2);
outdim=1; %输出的维度
f_ = size(P_train, 1); % 输入特征维度
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 格式转换
for i = 1 : M
vp_train{i, 1} = p_train(:, i);
vt_train{i, 1} = t_train(:, i);
end
for i = 1 : N
vp_test{i, 1} = p_test(:, i);
vt_test{i, 1} = t_test(:, i);
end
%% 创建待优化函数
ObjFcn = @CostFunction;
%% 贝叶斯优化参数范围
optimVars = [
optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')
optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')
optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];
%% 贝叶斯优化网络参数
BayesObject = bayesopt(ObjFcn, optimVars, ... % 优化函数,和参数范围
'MaxTime', Inf, ... % 优化时间(不限制)
'IsObjectiveDeterministic', false, ...
'MaxObjectiveEvaluations', 10, ... % 最大迭代次数
'Verbose', 1, ... % 显示优化过程
'UseParallel', false);
%% 得到最优参数
NumOfUnits = BayesObject.XAtMinEstimatedObjective.NumOfUnits; % 最佳隐藏层节点数
InitialLearnRate = BayesObject.XAtMinEstimatedObjective.InitialLearnRate; % 最佳初始学习率
L2Regularization = BayesObject.XAtMinEstimatedObjective.L2Regularization; % 最佳L2正则化系数
%% 创建网络,
layers = [ ...
sequenceInputLayer(f_) % 输入层
lstmLayer(NumOfUnits) % LSTM层
reluLayer % Relu激活层
fullyConnectedLayer(outdim) % 回归层
regressionLayer];
% 参数设置
options = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 500, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', InitialLearnRate, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod', 450, ... % 训练次后开始调整学习率
'LearnRateDropFactor',0.2, ... % 学习率调整因子
'L2Regularization', L2Regularization, ... % 正则化参数
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 0, ... % 关闭优化过程
'Plots', 'training-progress'); % 画出曲线
%% 训练
net = trainNetwork(vp_train, vt_train, layers, options);
%% 预测
t_sim1 = predict(net, vp_train);
t_sim2 = predict(net, vp_test);
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1', ps_output);
T_sim2 = mapminmax('reverse', t_sim2', ps_output);
%% 数据格式转换
T_sim1 = cell2mat(T_sim1);
T_sim2 = cell2mat(T_sim2);
T_sim1=double(T_sim1);
T_sim2=double(T_sim2);
%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);
%% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;
%% MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;
%% 绘图
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
%% 均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);
%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;
%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;
SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%% 训练集绘图
figure
%plot(1:M,T_train,'r-*',1:M,T_sim1,'b-o','LineWidth',1)
plot(1:M,T_train,'r-*',1:M,T_sim1,'b-o','LineWidth',1.5)
legend('真实值','Bayes-LSTM预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'训练集预测结果对比';['(R^2 =' num2str(R1) ' RMSE= ' num2str(error1) ' MSE= ' num2str(mse1) ' RPD= ' num2str(RPD1) ')' ]};
title(string)
%% 预测集绘图
figure
plot(1:N,T_test,'r-*',1:N,T_sim2,'b-o','LineWidth',1.5)
legend('真实值','Bayes-LSTM预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'测试集预测结果对比';['(R^2 =' num2str(R2) ' RMSE= ' num2str(error2) ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')']};
title(string)
%% 测试集误差图
figure
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('Bayes-LSTM预测输出误差')
%% 绘制线性拟合图
%% 训练集拟合效果图
figure
plot(T_train,T_sim1,'*r');
xlabel('真实值')
ylabel('预测值')
string = {'训练集效果图';['R^2_c=' num2str(R1) ' RMSEC=' num2str(error1) ]};
title(string)
hold on ;h=lsline;
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 预测集拟合效果图
figure
plot(T_test,T_sim2,'ob');
xlabel('真实值')
ylabel('预测值')
string1 = {'测试集效果图';['R^2_p=' num2str(R2) ' RMSEP=' num2str(error2) ]};
title(string1)
hold on ;h=lsline();
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 求平均
R3=(R1+R2)./2;
error3=(error1+error2)./2;
%% 总数据线性预测拟合图
tsim=[T_sim1,T_sim2]';
S=[T_train,T_test]';
figure
plot(S,tsim,'ob');
xlabel('真实值')
ylabel('预测值')
string1 = {'所有样本拟合预测图';['R^2_p=' num2str(R3) ' RMSEP=' num2str(error3) ]};
title(string1)
hold on ;h=lsline();
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为: ',num2str(mse2)])
disp(['均方根误差RMSEP为: ',num2str(error2)])
disp(['决定系数R^2为: ',num2str(R2)])
disp(['剩余预测残差RPD为: ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为: ',num2str(MAPE2)])
grid
智能算法及其模型预测
- 粉丝: 2525
- 资源: 871
最新资源
- 光储并网VSG系统Matlab simulink仿真模型,附参考文献 系统前级直流部分包括光伏阵列、变器、储能系统和双向dcdc变器,后级交流子系统包括逆变器LC滤波器,交流负载 光储并网VSG系
- file_241223_024438_84523.pdf
- 质子交膜燃料电池PEMFC Matlab simulink滑模控制模型,过氧比控制,温度控制,阴,阳极气压控制
- IMG20241223015444.jpg
- 模块化多电平变器(MMC),本模型为三相MMC整流器 控制策略:双闭环控制、桥臂电压均衡控制、模块电压均衡控制、环流抑制控制策略、载波移相调制,可供参考学习使用,默认发2020b版本及以上
- Delphi 12 控件之FlashAV FFMPEG VCL Player For Delphi v7.0 for D10-D11 Full Source.7z
- Delphi 12 控件之DevExpressVCLProducts-24.2.3.exe.zip
- Mysql配置文件优化内容 my.cnf
- 中国地级市CO2排放数据(2000-2023年).zip
- smart200光栅报警程序
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈