# Lama-cleaner: Image inpainting tool powered by SOTA AI model
[![Downloads](https://pepy.tech/badge/lama-cleaner)](https://pepy.tech/project/lama-cleaner)
[![Downloads](https://pepy.tech/badge/lama-cleaner/month)](https://pepy.tech/project/lama-cleaner)
![version](https://img.shields.io/pypi/v/lama-cleaner)
<a href="https://colab.research.google.com/drive/1e3ZkAJxvkK3uzaTGu91N9TvI_Mahs0Wb?usp=sharing" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/></a>
https://user-images.githubusercontent.com/3998421/153323093-b664bb68-2928-480b-b59b-7c1ee24a4507.mp4
- [x] Support multiple model architectures
1. [LaMa](https://github.com/saic-mdal/lama)
1. [LDM](https://github.com/CompVis/latent-diffusion)
- [x] Support CPU & GPU
- [x] High resolution support
- [x] Run as a desktop APP
- [x] Multi stroke support. Press and hold the `cmd/ctrl` key to enable multi stroke mode.
- [x] Zoom & Pan
## Install
```bash
pip install lama-cleaner
lama-cleaner --device=cpu --port=8080
```
Available commands:
| Name | Description | Default |
| ---------- | ------------------------------------------------ | -------- |
| --model | lama or ldm. See details in **Model Comparison** | lama |
| --device | cuda or cpu | cuda |
| --gui | Launch lama-cleaner as a desktop application | |
| --gui_size | Set the window size for the application | 1200 900 |
| --input | Path to image you want to load by default | None |
| --port | Port for flask web server | 8080 |
| --debug | Enable debug mode for flask web server | |
## Settings
You can change the configs of inpainting process in the settings interface of the web page.
<img src="./assets/settings.png" width="400px">
### Inpainting Model
Select the inpainting model to use, and set the configs corresponding to the model.
LaMa model has no configs that can be specified at runtime.
LDM model has two configs to control the quality of final result:
1. Steps: You can get better result with large steps, but it will be more time-consuming
2. Sampler: ddim or [plms](https://arxiv.org/abs/2202.09778). In general plms can get better results with fewer steps
### High Resolution Strategy
There are three strategies for handling high-resolution images.
- **Original**: Use the original resolution of the picture, suitable for picture size below 2K.
- **Resize**: Resize the longer side of the image to a specific size(keep ratio), then do inpainting on the resized image.
The inpainting result will be pasted back on the original image to make sure other part of image not loss quality.
- **Crop**: Crop masking area from the original image to do inpainting, and paste the result back.
Mainly for performance and memory reasons on high resolution image. This strategy may give better results for ldm model.
## Model Comparison
| Model | Pron | Corn |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| LaMa | - Perform will on high resolution image(~2k)<br/> - Faster than diffusion model | |
| LDM | - It's possible to get better and more detail result, see example below<br/> - The balance of time and quality can be achieved by steps | - Slower than GAN model<br/> - Need more GPU memory<br/> - Not good for high resolution images |
| Original Image | LaMa | LDM |
| ----------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
| ![photo-1583445095369-9c651e7e5d34](https://user-images.githubusercontent.com/3998421/156923525-d6afdec3-7b98-403f-ad20-88ebc6eb8d6d.jpg) | ![photo-1583445095369-9c651e7e5d34_cleanup_lama](https://user-images.githubusercontent.com/3998421/156923620-a40cc066-fd4a-4d85-a29f-6458711d1247.png) | ![photo-1583445095369-9c651e7e5d34_cleanup_ldm](https://user-images.githubusercontent.com/3998421/156923652-0d06c8c8-33ad-4a42-a717-9c99f3268933.png) |
Blogs about diffusion models:
- https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
- https://yang-song.github.io/blog/2021/score/
## Development
Only needed if you plan to modify the frontend and recompile yourself.
### Frontend
Frontend code are modified from [cleanup.pictures](https://github.com/initml/cleanup.pictures), You can experience their
great online services [here](https://cleanup.pictures/).
- Install dependencies:`cd lama_cleaner/app/ && yarn`
- Start development server: `yarn start`
- Build: `yarn build`
## Docker
Run within a Docker container. Set the `CACHE_DIR` to models location path. Optionally add a `-d` option to
the `docker run` command below to run as a daemon.
### Build Docker image
```
docker build -f Dockerfile -t lamacleaner .
```
### Run Docker (cpu)
```
docker run -p 8080:8080 -e CACHE_DIR=/app/models -v $(pwd)/models:/app/models -v $(pwd):/app --rm lamacleaner python3 main.py --device=cpu --port=8080
```
### Run Docker (gpu)
```
docker run --gpus all -p 8080:8080 -e CACHE_DIR=/app/models -v $(pwd)/models:/app/models -v $(pwd):/app --rm lamacleaner python3 main.py --device=cuda --port=8080
```
Then open [http://localhost:8080](http://localhost:8080)
## Like My Work?
<a href="https://www.buymeacoffee.com/Sanster">
<img height="50em" src="https://cdn.buymeacoffee.com/buttons/v2/default-blue.png" alt="Sanster" />
</a>
没有合适的资源?快使用搜索试试~ 我知道了~
基于 SOTA AI模型 的 图像修复工具__代码_下载
共134个文件
tsx:31个
scss:26个
ttf:22个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 126 浏览量
2022-07-03
12:48:47
上传
评论 1
收藏 3.06MB ZIP 举报
温馨提示
支持多种模型架构 LDM 支持CPU和GPU 高分辨率支持 作为桌面APP运行 多冲程支持。按住该cmd/ctrl键可启用多冲程模式。 缩放和平移 效果展示: https://user-images.githubusercontent.com/3998421/153323093-b664bb68-2928-480b-b59b-7c1ee24a4507.mp4 更多详情、使用方法,请下载后阅读README.md文件
资源推荐
资源详情
资源评论
收起资源包目录
基于 SOTA AI模型 的 图像修复工具__代码_下载
(134个子文件)
main.4c6c667e.chunk.css 20KB
Dockerfile 674B
.env 27B
.gitignore 351B
.gitignore 110B
index.html 2KB
index.html 917B
2.918f0adb.chunk.js 370KB
main.6b34bb53.chunk.js 44KB
runtime-main.5e86ac81.js 1KB
package.json 2KB
.eslintrc.json 1KB
asset-manifest.json 651B
tsconfig.json 535B
LICENSE 11KB
LICENSE 11KB
yarn.lock 486KB
README.md 7KB
ldm_resize_result.png 193KB
ldm_original_result.png 193KB
lama_crop_result.png 193KB
ldm_crop_result.png 193KB
lama_resize_result.png 193KB
lama_original_result.png 193KB
image.png 129KB
settings.png 80KB
mask.png 8KB
.prettierrc 95B
plms_sampler.py 12KB
ldm.py 11KB
ddim_sampler.py 7KB
server.py 5KB
base.py 4KB
utils.py 4KB
helper.py 3KB
benchmark.py 3KB
lama.py 2KB
test_model.py 2KB
setup.py 1KB
model_manager.py 1KB
parse_args.py 1KB
schema.py 412B
__init__.py 144B
main.py 83B
__init__.py 0B
__init__.py 0B
Editor.scss 2KB
Tooltip.scss 1KB
_Colors.scss 1KB
_ColorsDark.scss 1KB
Toast.scss 1KB
Selector.scss 1KB
_Mixins.scss 1KB
Shortcuts.scss 1KB
Modal.scss 1KB
_Animations.scss 1002B
_MediaQueries.scss 924B
_index.scss 814B
Switch.scss 797B
SettingBlock.scss 665B
Header.scss 586B
FileSelect.scss 537B
Button.scss 531B
Settings.scss 458B
_Fonts.scss 431B
LandingPage.scss 408B
App.scss 304B
ThemeChanger.scss 278B
NumberInput.scss 224B
HDSettingBlock.scss 114B
ModelSettingBlock.scss 79B
_index.scss 48B
publish.sh 143B
utils.ts 5KB
inpainting.ts 2KB
setupTests.ts 254B
react-app-env.d.ts 40B
Editor.tsx 26KB
FileSelect.tsx 4KB
HDSettingBlock.tsx 4KB
Shortcuts.tsx 3KB
ModelSettingBlock.tsx 3KB
SettingBlock.tsx 3KB
Workspace.tsx 2KB
Toast.tsx 2KB
Atoms.tsx 2KB
Selector.tsx 2KB
ShortcutsModal.tsx 2KB
SizeSelector.tsx 2KB
Header.tsx 2KB
SettingIcon.tsx 2KB
Button.tsx 1KB
App.tsx 1KB
Modal.tsx 1KB
SettingsModal.tsx 1KB
ThemeChanger.tsx 1016B
GraduallyInpaintingSettingBlock.tsx 906B
useInputImage.tsx 881B
NumberInputSetting.tsx 881B
Switch.tsx 827B
共 134 条
- 1
- 2
资源评论
快撑死的鱼
- 粉丝: 1w+
- 资源: 9149
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功