# DETERMINING COMMUNITY STRUCTURE IN SOCIAL NETWORK USING DIFFERENTIAL EVOLUTION
Research on determining community structure in complex networks has attracted a lot of attention in various applications, such as e-mail networks, citation networks, social networks, metabolic networks, airline networks, biological networks, information networks, technology networks, and computer networks. The popularity of determining the community structure is because it can analyze the structure and functionality of a network, where the network or community itself can be interpreted as a node that is closely related in an information network.
Meanwhile, it is difficult to determine a community structure by maximizing the value of modularity. Therefore, many studies have introduced new algorithms to solve problems in determining community structure and maximizing the value of this modularity. Differential Evolution is an evolution-based algorithm that is similar to the genetic algorithm (GA) in which DE is very simple and efficient. DE can provide speed, and accuracy solutions, which are very suitable for detection of a community. DE does not need to know about community structure and number of communities to be able to detect a community.
This research focuses on Differential Evolution based Community Detection (DECD) which adds a clean up feature in it. The final result of this research is the comparison of the modularity value based on the community structure determination from DECD, Girvan and Newman Algorithm and Louvain Algorithm. The best results for modularity were obtained using DECD which got 0.6833 for the Zachary's karate club dataset, 0.7446 for the Bootlenose dolphins dataset, 0.7242 for the American college football dataset, and 0.5892 for the Books about US politics dataset.
# Dataset Karate 0.6833
![alt text](https://raw.githubusercontent.com/taufanbagusdpa/Differential-Evolution-Community-Detection/master/EKSPRESI/karate.svg?raw=true)
# Dataset Dolphins 0.7446
![alt text](https://raw.githubusercontent.com/taufanbagusdpa/Differential-Evolution-Community-Detection/master/EKSPRESI/dolphins.svg?raw=true)
# Dataset Football 0.7242
![alt text](https://raw.githubusercontent.com/taufanbagusdpa/Differential-Evolution-Community-Detection/master/EKSPRESI/football.svg?raw=true)
# Dataset Books 0.5892
![alt text](https://raw.githubusercontent.com/taufanbagusdpa/Differential-Evolution-Community-Detection/master/EKSPRESI/books.svg?raw=true)
没有合适的资源?快使用搜索试试~ 我知道了~
使用差分进化 确定社交网络中的社区结构_python_Jupyter _代码_下载
共83个文件
csv:59个
ipynb:11个
svg:5个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 147 浏览量
2022-06-22
07:10:06
上传
评论
收藏 1.1MB ZIP 举报
温馨提示
在复杂网络中确定社区结构的研究在电子邮件网络、引文网络、社交网络、代谢网络、航空网络、生物网络、信息网络、技术网络和计算机网络等各种应用中引起了广泛关注。确定社区结构的流行是因为它可以分析网络的结构和功能,其中网络或社区本身可以解释为信息网络中密切相关的节点。同时,很难通过最大化模块化的价值来确定社区结构。因此,许多研究引入了新的算法来解决确定社区结构和最大化这种模块化价值的问题。差分进化是一种基于进化的算法,类似于遗传算法 (GA),其中 DE 非常简单和高效。DE可以提供速度和准确性的解决方案,非常适合社区检测。DE 无需了解社区结构和社区数量即可检测社区。这项研究的重点是基于差分进化的社区检测 (DECD),它在其中添加了清理功能。本研究的最终结果是基于DECD、Girvan和Newman算法和Louvain算法的社区结构确定的模块化值的比较。使用 DECD 获得了模块化的最佳结果,Zachary 的空手道俱乐部数据集为 0.6833,Bootlenose 海豚数据集为 0.7446,为 0。 更多详情、使用方法,请下载后阅读README.md文件
资源推荐
资源详情
资源评论
收起资源包目录
Differential-Evolution-Community-Detection-master.zip (83个子文件)
Differential-Evolution-Community-Detection-master
README.md 2KB
Girvan Newman Algoritma.ipynb 5KB
books.csv 3KB
Algoritma Genetika.ipynb 37KB
dolphins.csv 918B
EKSPRESI
GA_books_1.csv 145KB
Visualisasi Dolphins.ipynb 99KB
GA_books_6.csv 176KB
visualisasi_books.csv 1KB
Visualisasi Karate.ipynb 10KB
GA_books_4.csv 199KB
1000_karate.csv 503KB
karate.svg 73KB
1000_dolphins_final.csv 38KB
GA_karate_5.csv 78KB
GA_dolphins_8.csv 154KB
GA_dolphins_7.csv 96KB
GA_karate_1000.csv 1.24MB
GA_books_3.csv 326KB
football.svg 289KB
1000_books.csv 2.29MB
Visualisasi Footballs.ipynb 152KB
GA_football_6.csv 185KB
1000_football_final.csv 39KB
GA_dolphins_1.csv 95KB
struktur_louvain.txt 1KB
struktur.txt 1KB
GA_dolphins_9.csv 81KB
1000_books_final.csv 39KB
GA_football.csv 144KB
visualisasi_football.csv 886B
GA_football_5.csv 216KB
GA_dolphins_3.csv 62KB
GA_karate_6.csv 49KB
books.svg 152KB
GA_football_8.csv 454KB
Visualisasi Books.ipynb 149KB
1000_football.csv 3.9MB
GA_karate.csv 53KB
GA_football_7.csv 179KB
GA_football_3.csv 153KB
GA_books_8.csv 184KB
GA_dolphins_10.csv 96KB
GA_books_7.csv 172KB
GA_books_5.csv 170KB
.ipynb_checkpoints
Visualisasi Karate-checkpoint.ipynb 54KB
Visualisasi Dolphins-checkpoint.ipynb 93KB
Visualisasi Footballs-checkpoint.ipynb 143KB
Visualisasi Books-checkpoint.ipynb 141KB
time.txt 148B
GA_dolphins_5.csv 96KB
visualisasi_karate.csv 266B
GA_karate_8.csv 31KB
struktur.xlsx 19KB
GA_dolphins_6.csv 136KB
GA_karate_4.csv 56KB
GA_books_2.csv 172KB
GA_dolphins_4.csv 156KB
GA_books_10.csv 180KB
GA_dolphins_1000.csv 1.15MB
GA_football_2.csv 886KB
GA_karate_10.csv 71KB
GA_dolphins_2.csv 69KB
GA_football_10.csv 1.31MB
GA_karate_9.csv 33KB
~$struktur.xlsx 165B
dolphins.svg 152KB
GA_karate_7.csv 31KB
1000_dolphins.csv 1.02MB
line_plot.svg 44KB
.DS_Store 12KB
GA_karate_2.csv 65KB
visualisasi_dolphins.csv 571B
GA_karate_3.csv 35KB
GA_football_9.csv 286KB
1000_karate_final.csv 38KB
girvan_newman.txt 1KB
karate.csv 500B
GA_books_9.csv 620KB
GA_football_4.csv 144KB
karate.csv 500B
football.csv 4KB
Louvain Algoritma.ipynb 3KB
共 83 条
- 1
资源评论
- greymouse4012022-06-30资源有一定的参考价值,与资源描述一致,很实用,能够借鉴的部分挺多的,值得下载。
快撑死的鱼
- 粉丝: 1w+
- 资源: 9149
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功