Linear Algebra Done Right 3th edition


-
第三版的linear algebra done right,哈佛大学线性代数教材,英文数字版,带目录。
Undergraduate Texts in mathematics Series editors: Sheldon axler San francisco state University, San francisco, CA, USA Kenneth ribet University of california, Berkeley, CA, USA Advisory board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale university, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, Rl, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interrelations among different aspects of the subject. They feature examples that llustrate key concepts as well as exercises that strengthen understanding For further volumes http://www.springer.com/series/666 Sheldon axler Linear Algebra Done right Third edition ② Springer Sheldon axler Department of mathematics San Francisco State University San francisco. CA USA ISSN0172-6056 IsSN 2197-5604(electronic ISBN978-3-319-110790 ISBN978-3-319-11080-6( e Book) DOⅠ10.1007/978-3-319-11080-6 pringer Cham Heidelberg New York dordrecht London Library of Congress control Number: 2014954079 Mathematics Subject Classification(2010): 15-01, 15A03, 15A04, 15A15, 15A18, 15A21 C Springer International Publishing 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation computer software or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein Typeset by the author in LaTeX Cover figure: For a statement of Apollonius's Identity and its connection to linear algebra, see the last exercise in section 6.a Printed on acid-free paper SpringerispartofSpringerScience+businessMedia(www.springer.com) Contents Preface for the Instructor xi Preface for the student xv Acknowledgments xvii 1 Vector Spaces 1 lA R and cn 2 Complex numbers 2 Lists 5 Digression on fields 10 Exercises 1.a 11 1. B Definition of Vector Space 12 Exercises 1.B 17 L C SI ubspaces 18 Sums of Subspaces 20 Direct sums 21 Exercises 1. c 24 2 Finite-Dimensional vector Spaces 27 2. A Span and Linear Independence 28 Linear Combinations and Span 28 Linear Independence 32 Exercises 2.A 37 Contents 2.B Bases 39 Exercises 2.B 43 2. C Dimension 44 Exercises 2. C 48 3 Linear Maps 51 3. A The Vector Space of Linear Maps 52 Definition and Examples of linear maps 52 Algebraic Operations on L(V,w) 55 Exercises 3.A 57 3.B Null Spaces and Ranges 59 Null Space and Injectivity 59 Range and surjectivity 61 Fundamental Theorem of Linear Maps 63 Exercises 3. B 67 3. c Matrices 70 Representing a Linear Map by a Matrix 70 Addition and Scalar Multiplication of Matrices 72 Matrix Multiplication 74 Exercises 3 c 78 3.D Invertibility and Isomorphic Vector Spaces 80 Invertible Linear Maps 80 Isomorphic vector Spaces 82 Linear maps thought of as matrix Multiplication 84 Operators 86 Exercises 3. D 88 3.E Products and Quotients of Vector Spaces 91 Products of Vector Spaces 91 Products and direct sums 93 Quotients of Vector Spaces 94 Exercises 3.e 98 Contents 3.f Duality 101 The Dual Space and the Dual Map 101 The Null Space and Range of the Dual of a Linear Map 104 The Matrix of the Dual of a Linear Map 109 The Rank of a matrix 111 Exercises 3F 113 4 Polynomials 117 Complex Conjugate and absolute value 118 Uniqueness of Coefficients for Polynomials 120 The Division algorithm for polynomials 121 Zeros of Polynomials 122 Factorization of polynomials over c 123 Factorization of polynomials overr 126 Exercises 4 129 5 Eigenvalues, Eigenvectors, and Invariant Subspaces 131 5.A Invariant Subspaces 132 Eigenvalues and eigenvectors 133 Restriction and Quotient Operators 137 Exercises 5.a 138 5. B Eigenvectors and Upper-Triangular Matrices 143 Polynomials applied to operators 143 Existence of Eigenvalues 145 Upper-Triangular Matrices 146 Exercises 5.B 153 5. C Eigenspaces and Diagonal Matrices 155 Exercises 5C 160 6 Inner Product Spaces 163 6.A Inner products and norms 164 Inner products 164 Norms 168 Exercises 6.A 175 iii Contents 6.B Orthonormal bases 180 Linear Functionals on Inner Product Spaces 187 Exercises 6.b 189 6. C Orthogonal Complements and minimization Problems 193 Orthogonal Complements 193 Minimization problems 198 Exercises 6.C 201 7 Operators on Inner Product spaces 203 7.a Self-Adjoint and normal operators 204 Adjoints 204 Self-Adjoint operators 209 Normal operators 212 Exercises 7.a 214 7.B The Spectral Theorem 217 The Complex spectral Theorem 217 The real Spectral Theorem 219 Exercises 7.B 223 7. c Positive Operators and Isometries 225 Positive Operators 225 Isometries 228 Exercises 7 c 231 7.D Polar Decomposition and Singular value Decomposition 233 Polar Decomposition 233 Singular value decomposition 236 Exercises 7 D 238 8 Operators on Complex vector spaces 241 8.A Generalized Eigenvectors and Nilpotent Operators 242 Null Spaces of Powers of an Operator 242 Generalized Eigenvectors 244 Nilpotent Operators 248 Exercises 8.A 249 Contents 8.B Decomposition of an Operator 252 Description of Operators on Complex Vector Spaces 252 Multiplicity of an eigenvalue 254 Block Diagonal Matrices 255 Square roots 258 Exercises 8.B 259 8.C Characteristic and Minimal Polynomials 261 The Cayley-Hamilton Theorem 261 The minimal polynomial 262 Exercises 8.C 267 8. d Jordan form 270 exercises 8D 274 9 Operators on Real vector Spaces 275 9. A Complexification 276 Complexification of a Vector Space 276 Complexification of an Operator 277 The minimal polynomial of the complexification 279 Eigenvalues of the Complexification 280 Characteristic Polynomial of the Complexification 283 Exercises 9.A 285 9.B Operators on Real Inner product Spaces 287 Normal operators on real inner product Spaces 287 Isometries on Real Inner Product Spaces 292 Exercises 9.B 294 10 Trace and Determinant 295 10.A Trace 296 Change of Basis 296 Trace: A Connection Between Operators and matrices 299 Exercises 10.a 304

-
2019-06-19
3.5MB
Linear algebra done right (线性代数应该这样学) 第三版
2017-10-09英文版第三版。 描述线性算子的结构是线性代数的中心任务之一,传统的方法多以行列式为工具,但是行列式既难懂又不直观,其定义的引入也往往缺乏动因。本书作者独辟蹊径,抛弃了这种曲折的思路,把重点放在抽象的向
2.78MB
Linear algebra done right, 3rd Edition, 2015.pdf
2019-05-10线性代数应该这样学,英文版,第三版 Linear algebra done right, 3rd Edition, 2015
1.21MB
Linear Algebra Done Right
2011-01-18Linear Algebra Done Right一本很有趣的高等代数讲义,比国内大学的高等代数深一些,但是看起来很简单
3.5MB
Linear Algebra Done Right, 3rd Edition
2016-01-17《线性代数应该这样学,第3版》 描述线性算子的结构是线性代数的中心任务之一,传统的方法多以行列式为工具,但是行列式既难懂又不直观,其定义的引入也往往缺乏动因。本书作者独辟蹊径,抛弃了这种曲折的思路,把
3.5MB
Linear algebra done right, 3rd Edition, 2015
2016-01-23线性代数学习经典图书,国外经典图书,英文文字版
5.7MB
linear algebra done right(3rd Ed)
2018-01-01一本非常好的线性代数入门书籍,全英文,高清扫描件,编程研究矩阵第一步~
2.89MB
Linear algebra done right
2018-08-01线性代数快速入门的经典书籍,已经成了机器学习的必备数学基础课程之一。
2.61MB
Linear Algebra Done Right
2018-06-12线性代数应该这样学,英文版本。书起点较低,不需要太多预备知识,而特色鲜明,是公认的阐述线性代数的经典佳作。原书自出版以来,迅速风靡世界,在30多个国家为200多所高校所采用,其中包括斯坦福大学和加州大
2.61MB
Axler-Linear Algebra Done right 3rd.
2018-10-16本书强调抽象的向量空间和线性映射, 内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等. 本书在内容编排和处理方法上与国内通行的做法大不相同, 它完全抛开行列式, 采用更直接、更简捷的方法阐述了
3.5MB
Linear algebra done right 3rd
2015-05-04最新版(第三版)的Linear algebra done right,英文原版的(文字版非扫描),我看CSDN没有就上传上来
13.94MB
线性代数应该这样学Liner Algebra Done Right(中文)
2017-11-13线性代数应该这样学 Liner Algebra Done Right (中文)
14.4MB
线性代数应该这样学Liner Algebra Done Right(中文).pdf
2018-02-07线性代数应该这样学Liner Algebra Done Right(中文).pdf 线性代数应该这样学Liner Algebra Done Right(中文).pdf 线性代数应该这样学Liner A
C语言入门--必须基础17讲
2017-07-28适合没有基础的人群学习C语言,简单的入门教程。帮助小白理解什么是开发,什么是编程。做的很简单,很多细节没有详细讲解,不适合用来深入研究。学了这个,你能理解什么是编程,什么是C语言。
5.8MB
2020美赛C题题目.rar
2020-03-06Problem C: 电商里的数据财富 在电商市场中,亚马逊为消费者提供了对购买商品的评价(打分和评论)的服务。个人评级,又称为“星级评级”,意思是允许消费者使用1(低分差评,低满意度)到5(高分好评
89KB
html制作的登录界面
2011-05-12html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面
Java系列技术之JavaWeb入门
2018-09-18JavaWeb里的基础核心技术
793.88MB
7套JavaWeb毕业设计+教程
2020-10-157套JavaWeb毕业设计+教程,包括:1.源代码;2数据库;3.模块解析;4.视频教程;5.项目截图
19.9MB
谷粒商城官方笔记(基础高级集群).rar
2020-07-27谷粒商城官方笔记,很好的配套资料,更多笔记可以去我专栏找https://blog.csdn.net/hancoder/category_10147715.html
1.70MB
微信抽奖源码PHP前后台+转盘+数据库完整示例
2020-01-14微信抽奖源码PHP前后台+转盘+数据库完整示例
308KB
研究论文-一种新的WIMAX标准LDPC码的软判决译码算法.pdf
2019-08-07WIMAX标准下的LDPC码采用准循环编码方式,其译码多为和积(SP)译码算法。为了进一步降低译码复杂度,通过大量仿真分析获得最优乘性因子的值,并推导出近似线性公式,提出了一种改进型的归一化最小和(M
9KB
侯捷C++全套课程视频资源
2019-06-06侯捷全套课程,C++11新标准,侯捷 - C++面向对象高级开发,侯捷 - STL和泛型编程,C++内存管理_侯捷
程序员的数学:微积分
2019-09-28本课程介绍程序员必备的数学基础内容,在取材上侧重人工智能、数据分析等热门领域
-
下载
【076期】问卷、量表或实验数据分析的研究框架.docx
【076期】问卷、量表或实验数据分析的研究框架.docx
-
下载
kafkagongju.zip
kafkagongju.zip
-
博客
Nimbus线上AMA内容记录-第四期
Nimbus线上AMA内容记录-第四期
-
下载
four_axi_1.prt
four_axi_1.prt
-
下载
SSM框架开发的家校通项目.zip
SSM框架开发的家校通项目.zip
-
博客
Java web从零开始 servlet的层次结构(四)
Java web从零开始 servlet的层次结构(四)
-
学院
【数据分析-随到随学】Python语法强化与数据处理
【数据分析-随到随学】Python语法强化与数据处理
-
学院
算法导论二(排序和顺序统计量)——编程大牛的必经之路
算法导论二(排序和顺序统计量)——编程大牛的必经之路
-
学院
UE4游戏逆向与安全+FPS游戏逆向与安全
UE4游戏逆向与安全+FPS游戏逆向与安全
-
下载
传统企业数字化转型指南.docx
传统企业数字化转型指南.docx
-
学院
【数据分析-随到随学】机器学习模型及应用
【数据分析-随到随学】机器学习模型及应用
-
博客
面向对象的分析与设计——用例图
面向对象的分析与设计——用例图
-
博客
Pytorch学习笔记 2.5:索引与切片
Pytorch学习笔记 2.5:索引与切片
-
下载
kettle开发项目.zip
kettle开发项目.zip
-
学院
手势解锁-canvas-javascript实战
手势解锁-canvas-javascript实战
-
学院
thinkphp5.1博客后台实战视频
thinkphp5.1博客后台实战视频
-
下载
【084期】核心期刊论文统计方法剖析:潜变量中介效应.docx
【084期】核心期刊论文统计方法剖析:潜变量中介效应.docx
-
博客
scala_包_2
scala_包_2
-
下载
untitled0.py
untitled0.py
-
博客
JAVA启动线程的五种方式
JAVA启动线程的五种方式
-
博客
disp
disp
-
博客
25条很棒的Python一行代码,建议收藏!
25条很棒的Python一行代码,建议收藏!
-
下载
【069期】期刊发表的数据处理与统计分析注意事项.docx
【069期】期刊发表的数据处理与统计分析注意事项.docx
-
学院
【数据分析-随到随学】Hive详解
【数据分析-随到随学】Hive详解
-
学院
【2021】Python3+Selenium3自动化测试(不含框架)
【2021】Python3+Selenium3自动化测试(不含框架)
-
下载
suse linux 上离线安装 postgresql12 资源.7z
suse linux 上离线安装 postgresql12 资源.7z
-
下载
【094期】相对剥夺感问卷.docx
【094期】相对剥夺感问卷.docx
-
学院
C++异步串口通信
C++异步串口通信
-
博客
试题 算法训练 最大质因数
试题 算法训练 最大质因数
-
博客
实现K值随深度衰减
实现K值随深度衰减