//***************************************************************************
// FIBTEST.CPP
//
// Test program for the F-heap implementation.
// Copyright (c) 1996 by John Boyer.
// See header file for free usage information.
//***************************************************************************
#include <math.h>
#include "mex.h"
extern void _main();
#include <stdlib.h>
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#include <memory.h>
#include <time.h>
#include "fibheap.h"
#define _FIBHEAP_CPP
//***************************************************************************
// This Fibonacci heap implementation is Copyright (c) 1996 by John Boyer.
// See the header file for free usage information.
//***************************************************************************
//***************************************************************************
// The classes in this package are designed to allow the package user
// to quickly and easily develop applications that require a heap data
// structure. Using amortized analysis, the asymptotically fastest heap
// data structure is the Fibonacci heap. The constants are a little
// high so the real speed gain will not be seen until larger data sets
// are required, but in most cases, if the data set is small, then the
// run-time will be neglible anyway.
//
// To use this heap class you need do only two things. First, subclass
// the FibHeapNode class to create the class of objects that you'd
// like to store in a heap. Second, create an instance of the FibHeap
// class, which can then be used to Insert(), ExtractMin(), etc.,
// instances of your FibHeapNode subclass. Notice that you don't need
// to create a subclass of the FibHeap class.
//
// The application-specific data object that you'd like to store in a heap
// will have a key value. In the class that you derive from FibHeapNode,
// you will need to define the key structure then provide assignment (=),
// equality (==) and less-than operators and a destructor. These functions
// are declared virtual so that the code in the FibHeap class can compare,
// assign and destroy your objects by calling on your code.
//
// The overloaded operators in your defined class MUST call functions in
// the Fibonacci heap node class first. For assignment, the function
// FHN_Assign() should be called before code that deals with the copy of
// the key value. For comparison operators, the function FHN_Cmp() should
// appear first. If it returns 0, then keys can be compared as normal.
// The following indicates what the three most common operators must do
// based on the return value of FHN_Cmp()
//
// For ==, if zero returned, then compare keys
// if non-zero X returned, then return 0
// For <, if zero returned, then compare keys
// if non-zero X returned, then return X<0?1:0
// For >, if zero returned, then compare keys
// if non-zero X returned, then return X>0?1:0
//***************************************************************************
#include <stdlib.h>
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include "fibheap.h"
//***************************************************************************
//=========================================================
// FibHeapNode Constructor
//=========================================================
//***************************************************************************
FibHeapNode::FibHeapNode()
{
Left = Right = Parent = Child = NULL;
Degree = Mark = NegInfinityFlag = 0;
}
//=========================================================
// FibHeapNode Destructor
//
// Body is empty, but declaration is required in order to
// force virtual. This will ensure that FibHeap class
// calls derived class destructors.
//=========================================================
FibHeapNode::~FibHeapNode()
{
}
//=========================================================
// FHN_Assign()
//
// To be used as first step of an assignment operator in a
// derived class. The derived class will handle assignment
// of key value, and this function handles copy of the
// NegInfinityFlag (which overrides the key value if it is
// set).
//=========================================================
void FibHeapNode::FHN_Assign(FibHeapNode& RHS)
{
NegInfinityFlag = RHS.NegInfinityFlag;
}
//=========================================================
// FHN_Cmp()
//
// To be used as the first step of ALL comparators in a
// derived class.
//
// Compares the relative state of the two neg. infinity
// flags. Note that 'this' is the left hand side. If
// LHS neg. infinity is set, then it will be less than (-1)
// the RHS unless RHS neg. infinity flag is also set.
// Only if function returns 0 should the key comparison
// defined in the derived class be performed, e.g.
//
// For ==, if zero returned, then compare keys
// if non-zero X returned, then return 0
// For <, if zero returned, then compare keys
// if non-zero X returned, then return X<0?1:0
// For >, if zero returned, then compare keys
// if non-zero X returned, then return X>0?1:0
//=========================================================
int FibHeapNode::FHN_Cmp(FibHeapNode& RHS)
{
if (NegInfinityFlag)
return RHS.NegInfinityFlag ? 0 : -1;
return RHS.NegInfinityFlag ? 1 : 0;
}
//========================================================================
// We do, on occasion, compare and assign objects of type FibHeapNode, but
// only when the NegInfinityFlag is set. See for example FibHeap::Delete().
//
// Also, these functions exemplify what a derived class should do.
//========================================================================
void FibHeapNode::operator =(FibHeapNode& RHS)
{
FHN_Assign(RHS);
// Key assignment goes here in derived classes
}
int FibHeapNode::operator ==(FibHeapNode& RHS)
{
if (FHN_Cmp(RHS)) return 0;
// Key compare goes here in derived classes
return 1;
}
int FibHeapNode::operator <(FibHeapNode& RHS)
{
int X;
if ((X=FHN_Cmp(RHS)) != 0)
return X < 0 ? 1 : 0;
// Key compare goes here in derived classes
return 0;
}
//=========================================================
// Print()
//=========================================================
void FibHeapNode::Print()
{
if (NegInfinityFlag)
cout << "-inf.";
}
//***************************************************************************
//===========================================================================
// FibHeap Constructor
//===========================================================================
//***************************************************************************
FibHeap::FibHeap()
{
MinRoot = NULL;
NumNodes = NumTrees = NumMarkedNodes = 0;
ClearHeapOwnership();
}
//===========================================================================
// FibHeap Destructor
//===========================================================================
FibHeap::~FibHeap()
{
FibHeapNode *Temp;
if (GetHeapOwnership())
{
while (MinRoot != NULL)
{
Temp = ExtractMin();
delete Temp;
}
}
}
//===========================================================================
// Insert() - O(1) actual; O(2) amortized
//
// I am using O(2) here to indicate that although Insert() is
// constant time, its amortized rating is more costly because some
// of the work of inserting is done by other operations such as
// ExtractMin(), which is where tree-balancing occurs.
//
// The child pointer is deliberately not set to NULL because Insert()
// is also used internally to help put whole trees onto the root list.
//===========================================================================
void FibHeap::Insert(FibHeapNode *NewNode)
{
if (NewNode == NULL) return;
// If the heap is currently empty, then new node becomes s