没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
ANSYS Fluent Theory Guide
Release 15.0ANSYS, Inc.
November 2013Southpointe
275 Technology Drive
Canonsburg, PA 15317
ANSYS, Inc. is
certified to ISO
9001:2008.
ansysinfo@ansys.com
http://www.ansys.com
(T) 724-746-3304
(F) 724-514-9494
Copyright and Trademark Information
© 2013 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.
ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any
and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or
trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used
by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service
and feature names or trademarks are the property of their respective owners.
Disclaimer Notice
THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-
ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products
and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement
that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting
laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products
and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions
of that software license agreement.
ANSYS, Inc. is certified to ISO 9001:2008.
U.S. Government Rights
For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,
duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.
software license agreement and FAR 12.212 (for non-DOD licenses).
Third-Party Software
See the
legal information in the product help files for the complete Legal Notice for ANSYS proprietary software
and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.
Published in the U.S.A.
Table of Contents
Using This Manual ................................................................................................................................... xxvii
1.The Contents of This Manual ........................................................................................................... xxvii
2.The Contents of the Fluent Manuals ............................................................................................... xxviii
3. Typographical Conventions ............................................................................................................. xxix
4. Mathematical Conventions ............................................................................................................... xxx
5. Technical Support ........................................................................................................................... xxxi
1. Basic Fluid Flow ....................................................................................................................................... 1
1.1. Overview of Physical Models in ANSYS Fluent .................................................................................... 1
1.2. Continuity and Momentum Equations ............................................................................................... 2
1.2.1.The Mass Conservation Equation .............................................................................................. 2
1.2.2. Momentum Conservation Equations ........................................................................................ 3
1.3. User-Defined Scalar (UDS) Transport Equations .................................................................................. 4
1.3.1. Single Phase Flow .................................................................................................................... 4
1.3.2. Multiphase Flow ....................................................................................................................... 5
1.4. Periodic Flows .................................................................................................................................. 6
1.4.1. Overview ................................................................................................................................. 6
1.4.2. Limitations ............................................................................................................................... 7
1.4.3. Physics of Periodic Flows .......................................................................................................... 7
1.4.3.1. Definition of the Periodic Velocity .................................................................................... 7
1.4.3.2. Definition of the Streamwise-Periodic Pressure ................................................................ 8
1.5. Swirling and Rotating Flows .............................................................................................................. 8
1.5.1. Overview of Swirling and Rotating Flows .................................................................................. 9
1.5.1.1. Axisymmetric Flows with Swirl or Rotation ....................................................................... 9
1.5.1.1.1. Momentum Conservation Equation for Swirl Velocity ............................................. 10
1.5.1.2.Three-Dimensional Swirling Flows .................................................................................. 10
1.5.1.3. Flows Requiring a Moving Reference Frame ................................................................... 11
1.5.2. Physics of Swirling and Rotating Flows .................................................................................... 11
1.6. Compressible Flows ........................................................................................................................ 12
1.6.1. When to Use the Compressible Flow Model ............................................................................ 13
1.6.2. Physics of Compressible Flows ................................................................................................ 13
1.6.2.1. Basic Equations for Compressible Flows ......................................................................... 14
1.6.2.2.The Compressible Form of the Gas Law .......................................................................... 14
1.7. Inviscid Flows ................................................................................................................................. 15
1.7.1. Euler Equations ...................................................................................................................... 15
1.7.1.1.The Mass Conservation Equation .................................................................................... 15
1.7.1.2. Momentum Conservation Equations .............................................................................. 16
1.7.1.3. Energy Conservation Equation ....................................................................................... 16
2. Flows with Moving Reference Frames ................................................................................................... 17
2.1. Introduction ................................................................................................................................... 17
2.2. Flow in a Moving Reference Frame .................................................................................................. 18
2.2.1. Equations for a Moving Reference Frame ................................................................................ 19
2.2.1.1. Relative Velocity Formulation ......................................................................................... 20
2.2.1.2. Absolute Velocity Formulation ....................................................................................... 21
2.2.1.3. Relative Specification of the Reference Frame Motion ..................................................... 21
2.3. Flow in Multiple Reference Frames .................................................................................................. 22
2.3.1.The Multiple Reference Frame Model ...................................................................................... 22
2.3.1.1. Overview ....................................................................................................................... 22
2.3.1.2. Examples ....................................................................................................................... 23
2.3.1.3. The MRF Interface Formulation ...................................................................................... 24
2.3.1.3.1. Interface Treatment: Relative Velocity Formulation ................................................. 24
iii
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.
2.3.1.3.2. Interface Treatment: Absolute Velocity Formulation ............................................... 25
2.3.2.The Mixing Plane Model ......................................................................................................... 25
2.3.2.1. Overview ....................................................................................................................... 26
2.3.2.2. Rotor and Stator Domains .............................................................................................. 26
2.3.2.3. The Mixing Plane Concept ............................................................................................. 27
2.3.2.4. Choosing an Averaging Method ..................................................................................... 28
2.3.2.4.1. Area Averaging ..................................................................................................... 28
2.3.2.4.2. Mass Averaging .................................................................................................... 28
2.3.2.4.3. Mixed-Out Averaging ............................................................................................ 29
2.3.2.5. Mixing Plane Algorithm of ANSYS Fluent ........................................................................ 29
2.3.2.6. Mass Conservation ........................................................................................................ 30
2.3.2.7. Swirl Conservation ......................................................................................................... 30
2.3.2.8. Total Enthalpy Conservation .......................................................................................... 31
3. Flows Using Sliding and Dynamic Meshes ............................................................................................ 33
3.1. Introduction ................................................................................................................................... 33
3.2. Dynamic Mesh Theory .................................................................................................................... 34
3.2.1. Conservation Equations ......................................................................................................... 35
3.2.2. Six DOF (6DOF) Solver Theory ................................................................................................. 36
3.3. Sliding Mesh Theory ....................................................................................................................... 37
4.Turbulence ............................................................................................................................................. 39
4.1. Underlying Principles of Turbulence Modeling ................................................................................. 39
4.1.1. Reynolds (Ensemble) Averaging .............................................................................................. 39
4.1.2. Filtered Navier-Stokes Equations ............................................................................................. 40
4.1.3. Hybrid RANS-LES Formulations ............................................................................................... 41
4.1.4. Boussinesq Approach vs. Reynolds Stress Transport Models ..................................................... 42
4.2. Spalart-Allmaras Model ................................................................................................................... 42
4.2.1. Overview ............................................................................................................................... 42
4.2.2.Transport Equation for the Spalart-Allmaras Model ................................................................. 43
4.2.3. Modeling the Turbulent Viscosity ............................................................................................ 43
4.2.4. Modeling the Turbulent Production ........................................................................................ 44
4.2.5. Modeling the Turbulent Destruction ....................................................................................... 45
4.2.6. Model Constants .................................................................................................................... 45
4.2.7. Wall Boundary Conditions ...................................................................................................... 45
4.2.8. Convective Heat and Mass Transfer Modeling .......................................................................... 46
4.3. Standard, RNG, and Realizable k-ε Models ........................................................................................ 46
4.3.1. Standard k-ε Model ................................................................................................................ 47
4.3.1.1. Overview ....................................................................................................................... 47
4.3.1.2. Transport Equations for the Standard k-ε Model ............................................................. 47
4.3.1.3. Modeling the Turbulent Viscosity ................................................................................... 47
4.3.1.4. Model Constants ........................................................................................................... 48
4.3.2. RNG k-ε Model ....................................................................................................................... 48
4.3.2.1. Overview ....................................................................................................................... 48
4.3.2.2. Transport Equations for the RNG k-ε Model ..................................................................... 48
4.3.2.3. Modeling the Effective Viscosity ..................................................................................... 49
4.3.2.4. RNG Swirl Modification .................................................................................................. 50
4.3.2.5. Calculating the Inverse Effective Prandtl Numbers .......................................................... 50
4.3.2.6. The R-ε Term in the ε Equation ........................................................................................ 50
4.3.2.7. Model Constants ........................................................................................................... 51
4.3.3. Realizable k-ε Model ............................................................................................................... 51
4.3.3.1. Overview ....................................................................................................................... 51
4.3.3.2. Transport Equations for the Realizable k-ε Model ............................................................ 52
4.3.3.3. Modeling the Turbulent Viscosity ................................................................................... 53
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.iv
Theory Guide
4.3.3.4. Model Constants ........................................................................................................... 54
4.3.4. Modeling Turbulent Production in the k-ε Models ................................................................... 54
4.3.5. Effects of Buoyancy on Turbulence in the k-ε Models ............................................................... 55
4.3.6. Effects of Compressibility on Turbulence in the k-ε Models ...................................................... 56
4.3.7. Convective Heat and Mass Transfer Modeling in the k-ε Models ............................................... 56
4.4. Standard and SST k-ω Models .......................................................................................................... 57
4.4.1. Standard k-ω Model ............................................................................................................... 58
4.4.1.1. Overview ....................................................................................................................... 58
4.4.1.2. Transport Equations for the Standard k-ω Model ............................................................. 58
4.4.1.3. Modeling the Effective Diffusivity ................................................................................... 59
4.4.1.3.1. Low-Reynolds-Number Correction ........................................................................ 59
4.4.1.4. Modeling the Turbulence Production ............................................................................. 60
4.4.1.4.1. Production of k ..................................................................................................... 60
4.4.1.4.2. Production of ω ..................................................................................................... 60
4.4.1.5. Modeling the Turbulence Dissipation ............................................................................. 60
4.4.1.5.1. Dissipation of k ..................................................................................................... 60
4.4.1.5.2. Dissipation of ω ..................................................................................................... 61
4.4.1.5.3. Compressibility Correction .................................................................................... 61
4.4.1.6. Model Constants ........................................................................................................... 62
4.4.2. Shear-Stress Transport (SST) k-ω Model ................................................................................... 62
4.4.2.1. Overview ....................................................................................................................... 62
4.4.2.2. Transport Equations for the SST k-ω Model ..................................................................... 63
4.4.2.3. Modeling the Effective Diffusivity ................................................................................... 63
4.4.2.4. Modeling the Turbulence Production ............................................................................. 64
4.4.2.4.1. Production of k ..................................................................................................... 64
4.4.2.4.2. Production of ω ..................................................................................................... 64
4.4.2.5. Modeling the Turbulence Dissipation ............................................................................. 65
4.4.2.5.1. Dissipation of k ..................................................................................................... 65
4.4.2.5.2. Dissipation of ω ..................................................................................................... 65
4.4.2.6. Cross-Diffusion Modification .......................................................................................... 65
4.4.2.7. Model Constants ........................................................................................................... 65
4.4.3.Turbulence Damping .............................................................................................................. 66
4.4.4. Wall Boundary Conditions ...................................................................................................... 67
4.5. k-kl-ω Transition Model ................................................................................................................... 67
4.5.1. Overview ............................................................................................................................... 67
4.5.2. Transport Equations for the k-kl-ω Model ................................................................................ 67
4.5.2.1. Model Constants ........................................................................................................... 71
4.6.Transition SST Model ....................................................................................................................... 71
4.6.1. Overview ............................................................................................................................... 71
4.6.2.Transport Equations for the Transition SST Model .................................................................... 71
4.6.2.1. Separation-Induced Transition Correction ...................................................................... 74
4.6.2.2. Coupling the Transition Model and SST Transport Equations ........................................... 74
4.6.2.3.Transition SST and Rough Walls ...................................................................................... 75
4.6.3. Mesh Requirements ............................................................................................................... 75
4.6.4. Specifying Inlet Turbulence Levels .......................................................................................... 78
4.7. Intermittency Transition Model ....................................................................................................... 79
4.7.1. Overview ............................................................................................................................... 79
4.7.2.Transport Equations for the Intermittency Transition Model ..................................................... 80
4.7.3. Coupling with the Other Models ............................................................................................. 82
4.7.4. Intermittency Transition Model and Rough Walls ..................................................................... 82
4.8.The V2F Model ................................................................................................................................ 82
4.9. Reynolds Stress Model (RSM) ........................................................................................................... 83
v
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.
Theory Guide
剩余813页未读,继续阅读
资源评论
qq_25683497
- 粉丝: 2
- 资源: 2
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功