ANSYS 15.0 Fluent Theory Guide

所需积分/C币:30 2015-12-18 20:30:10 24.45MB PDF

ANSYS 15.0 Fluent Theory Guide
Table of contents Using This Manual….….….…,……,…,…,…,…,…,…,…,…,…,…,…,…,…,…,…,…,…,…,…,……xxii 1.The Contents of this manual ·。着。音 XXVII 2. The Contents of the fluent manuals . 3. Typographical Conventions.............................. XXⅨX 4. Mathematica| Conventions…×X 5. Technical Support 1. Basic fluid flow.∴ ···········:····:··········:······:··········:·············:···········:········ 1. 1. Overview of Physical Models in ANsys Fluent 1. 2. Continuity and momentum Equations .......................... 1.2.1.The Mass Conservation equation 122 ·······*··*··········*········:·······*····*···························* 1.2.2. Momentum Conservation Equations……,,,,…,…,…,,…,…,…,3 1.3.User- Defined scalar(UDS) Transport Equations………,…,…,…,…,…,…,…,…,…,…,…,………4 1.3.1. Single Phase Flow ................... ················:···· ·:·······.····:····..·a····· 1.3.2. Multiphase Flow .···:·····:·.···· ·······:····4·:·····::·:··:·····:·:··············· 14. Periodic flows 着·非·非音 1.4.1.overview......44..44..4.w.44..4.4.4.4...44..4.4wwwww.w......6 14.2. LimitatⅰonS 14.3. Physics of Periodic Flows……,…,…,…,…,……,…,…,…,,…,…,…,…,…,…,…,…,……,…,7 1.4.3.1. Definition of the Periodic velocity 1.4.3.2. Definition of the streamwise-Periodic Pressure 8 1.5. Swirling and rotating Flows…..……………………8 1.5.1. Overview of Swirling and Rotating Flows.,.,,,,,,…,,,…,…,…,…, 1.5.1.1. Axisymmetric Flows with Swirl or rotation 9 1.5.1.1.1. Momentum Conservation Equation for Swirl Velocity…….….,…,………………,10 1.5.1. 2 Three-Dimensional Swirling Flows.......10 1.5.1.3. Flows Requiring a moving reference frame 1.5.2. Physics of Swirling and Rotating Flows………,…,…,…,…,,,…,…,……,…,,,11 6 Compressible f|oWs….....................…..……12 1.6.1. When to Use the Compressible Flow Model….……….……………………………13 1.6.2 Physics of Compressible Flows…… ··········:·············.中:a.:·4··:···:·.···:.··:·.:a····.:::·:····:· 13 1.6.2.1. Basic Equations for Compressible Flows... 14 1.6.2.2. The Compressible form of the gas law 14 7. Inviscid flows 着垂看 15 1.7.1. Euler Equations 1.7.1.1. the mass Conservation equation 15 1.7.1.2. Momentum Conservation equations 16 1.7.1.3. Energy Conservation Equation……………………,………,………,16 2. Flows with Moving Reference Frames 17 2.1. Introduction 17 221. Equations for a moving reference frame……………¨"¨…………,…… 2. 2. Flow in a Moving reference Frame 18 19 2.2.1.1. Relative velocity Formulation....................... 20 22.1.2. Absolute velocity Formulation…… ∴,21 22.1.3. Relative Specification of the reference Frame Motion…………………………21 2. 3. Flow in Multiple reference frames........... 22 2.3.1. the Multiple reference frame Model. ......,..............................................................................22 23.11 Overview 2.3.1.2. Examples........., 23 23.13. The mrf Interface formulation ad··.a:a.::: 24 23.1.3.1. Interface Treatment: Relative velocity Formulation……….….………………,24 Release 15.0-OSAS /P Inc A rights reserved -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates leery guide 2.3.1.3.2. nterface Treatment: Absolute velocity Formulation…..…….…….25 2.3.2. the Mixing plane Model 25 2.3.2.1.○ verview.…,……,,,,…,…,…,,,…,… 鲁非音。·。音· ∴26 23.22 Rotor and stator domains .wwwwggwwwwwwoooww 26 2.3.2. 3 The Mixing Plane Concept 非·非。着非。·。自非。自非。自非鲁非非非 27 232.4. Choosing an Averaging Method…… ∴28 2.3.24.1. Area Averaging..……… 着t非非非看。非曲B非非非非自道 28 23.2.4.2. Mass Averaging…………………… ····:·.···:·.···:···:············· 28 2.3.2.4.3. Mixed-Out Averaging ... 29 2.3.2.5. Mixing Plane algorithm of aNSYS Fluent ........................... 29 2.3.2.6. Mass Conservation 30 2.3.2.7. Swirl Conservation ......................................................................................................30 2.3.2.8. Total Enthalpy Conservation 31 3. Flows Using Sliding and Dynamic Meshes............................ ∴33 3.1. Introduction∴ ········ 33 3. 2. Dynamic Mesh Theory. 34 3.2.1. Conservation Equations ..··.··.·.···.················· 35 3. 2. Six DOF (6DOF) Solver Theory 36 33. Sliding Mesh Theory………………,37 4. Turbulence∴ 着·,··着·鲁非鲁 ····:······· 39 41. Underlying Principles of Turbulence Modeling………… ····:·········:·.················:····· 39 4.1.1. Reynolds(Ensemble) Averaging ∴39 4.12. Filtered Navier- Stokes Equations……………… ∴40 4.1.3. Hybrid RANS-LES Formulations ······ 41 4.1.4 Boussinesq approach vs. Reynolds Stress Transport Models……….……….....2 4.2. Spalart-Allmaras Model 42 4.2.1.overvieww..w....ww.www.ww.wwwwwwwo.oowwwww...............42 4.2.2. Transport equation for the spalart-Allmaras model 43 4.2.3. Modeling the turbulent viscosity . 43 4.2. 4 Modeling the turbulent Production 44 4.2.5. Modeling the turbulent Destruction........................ 45 4.2.6 Model Constants 45 42.7.Wa‖! Boundary Conditions..,.,.,…,.,….,….,,….…,.…,………,……,…45 4.28. Convective Heat and Mass Transfer Modeling……………,…,,…,…,…,…………,…,46 4.3. Standard, RNG, and realizable k-e Models 46 4.3.1. Standard k- Model ∴47 4.3.1.1.○ verview ∴47 4.3.1.2. Transport Equations for the standard k- E Model……...…………47 4.3.1.3. Modeling the turbulent Viscosity 47 4.3. 4 Model Constants ···.·····:·····.:·.··.·.········:······ 48 4.3.2. RNG K-E Model ............................................................................................................48 4.3.2.1.◎ verview∴……,…,48 4.3.2.2. Transport Equations for the rng k-E Model 48 4.3.2.3. Modeling the effective viscosity.................. 49 4.3.2. 4. RNG Swirl modification ,50 4.3.2.5. Calculating the Inverse Effective Prandtl Numbers........... 50 4.3.2.6. The R-E Term in the e Equation 50 43.27 Model Constants 鲁。自非非D非非·,非自·非·非·非非非。自非非自自非非·非非。音非·非·非非非非鲁。自非非着非D非·非非自·非自·音·非t非非非自自非自 51 4.3.3. Realizable k-ε Model.….….…51 4.3.3.1.○ verview,,,…,,…,,,,,…, ··:···· 音。普自音 51 4.3.3.2. Transport Equations for the realizable k-ε Model…..…..,…,,,,…… 52 4.3.3.3 Modeling the turbulent viscosity 53 Release 15.@ SAS /P, Inc. All rights reserved -Contains proprietary and confidential information of Ansys inc. and its subsidiaries and affiliates Theory guide 4..3.4. Model Constants 4.3.4. Modeling turbulent Production in the k-E Models 54 43.5. Effects of Buoyancy on turbulence in the k- Models.....….………155 4.3.6. Effects of Compressibility on turbulence in the k-ε Models……………………..56 4.3.7. Convective Heat and Mass transfer Modeling in the k-E Models..... 56 44. Standard and sst k-w models 鲁·着·鲁鲁。鲁 57 4. 4.1. Standard k-w model 58 4.4.1.1. Overview..………,……,……,……… ∴58 4.4.1.2. Transport Equations for the Standard k-w Model. ............58 4.4.13. Modeling the effective diffusivity………,…,…,.,…,…,,……………..159 44.131. LoW-Reynolds-Number Correction…………………………… .59 4.4.1.4. Modeling the turbulence production. .....................................................................60 4.4141.Production of k ·,··················,·························,······,··市市 4.4.1.4.2. Productiⅰ on of u∴…60 44.1.5. Modeling the turbulence Dissipation………………,…,…… ∴60 4.4.1.5.1. Dissipation of k............. ·:.:·:····: 44.1.5.2. Dissipation of w,.....,.,..,,…, 61 4.4.1.5.3. Compressibility Correction.......... 61 4.4.1.6. Model Constants 62 4.4.2. Shear-Stress Transport(SST)k-w Model..............62 4.42.1. Overview .······::·····.···············:···:·······:······:····:···4······:· 62 4.4.2.2. Transport Equations for the sst k-w Model. ....................................................................63 4.4.23. Modeling the Effective Diffusivity…………………………………63 4.4.2.4. Modeling the Turbulence Production .....64 44.2. Production of k 64 4.4.2.4.2. Production of u ·+··4 4.425 Modeling the turbulence dissipation…...……………………65 4.4.2.5.1. Dissipation of k 65 4.4.2.52. Dissipation of u…........,.,,,,……………65 4.4.2.6. Cross-Diffusion modification 5 4.4.2.7. Model Constants 65 4.4.3. Turbulence Damping……… 444.Wa‖ Boundary Conditions........,..,,.,,…,,,…………67 4.5. k-kl-w Transition model. 4.5.1.0 verview…167 4.5.2. Transport Equations for the k-kl∽ Model.……….…..……..……………67 45.21 Model constants d非鲁着鲁,自。自自曲曲鲁非鲁音鲁音非自自音着非,音。音 71 4.6. Transition sst model.mwwwwwwoooNNNN.. 71 4.6.1.0 verview..171 4.6.2. Transport Equations for the Transition SST Model 4.62.1.Separaton-nducedTransitoncorection…..174 4.6.2.2. Coupling the transition Model and sst transport equations. 4.6.2.3. Transition SST and Rough Walls ..175 4.6.3. Mesh Requirements ..................... 非着·非··。·D音非·着 ∴75 4.6.4. Specifying Inlet Turbulence Levels 香看 78 4.7. Intermittency Transition Model .···:···············:···············4···:·::·····: 79 4.7.1. Overview 79 4.7.2. Transport Equations for the Intermittency Transition Model ··非音·自非非非非D·d非非·非非 80 4.7.3. Coupling with the other Models ····:·::··:···:···:····:······ 82 4.7.4. ntermittency Transition Model and Rough Walls.………,…,………………,82 4. 8. the v2F Model 82 4.9. Reynolds Stress Model (rsm) 83 Release 15.0-OSAS /P Inc A rights reserved -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates leery guide 4.9.1. Overview ······.·:········ 83 4.9.2. Reynolds Stress transport equations ,83 4.9.3. Modeling turbulent Diffusive Transport ·普非音音·非鲁·非普非鲁·t非··非非音鲁自非非非·非·非·非普音自非·鲁自非非非 84 4.9.4. Modeling the Pressure-Strain Term...... 85 4.94.1. Linear pressure- Strain model...…….…….………85 4.9.4.2. LoW-Re modifications to the linear pressure-Strain model 86 4.9.4.3. Quadratic Pressure-Strain Model 非自着鲁自D自 86 4.9.4.4.Lowy- Re stress- Omega Model….….….…………,…………………………………87 4.9.5. Effects of Buoyancy on turbulence 89 49.6. Modeling the turbulence Kinetic Energy...,.,…,…,,…,,… 89 4.9.7. Modeling the dissipation rate.. 90 49.8. Modeling the turbulent viscosity….....,.,.,.,..….…90 4.9.9. Wall Boundary Conditions 90 4.9.10. Convective Heat and Mass Transfer Modeling 91 4.10. Scale-Adaptive simulation(SAS) Model 92 4.10.1. Overview∴………92 4.10.2. Transport Equations for the sst-Sas mode 93 4.10.3. SAS With Otherω- Based turbulence models…… .:..··:·.· ·垂非 94 4.1. Detached Eddy Simulation(DES)…… 95 4.11.1. Overview,…………………95 4.1.2. DES With the Spalart- Allmaras model….….…….…..…. 95 4.11,3 DES With the realizable k-e model 鲁非非非D非自由。自。。非非自非自非。自。曲自自d。。非·。自非。着 96 4.11.4DESwiththesstk-model.wwwwwwwwww.o.,97 4.115 DES With the transition sst model 97 4.11.6. Improved delayed Detached Eddy Simulation(DDES)…….….…,,,……………98 4.11.6.1. Overview of iddeS ·+··4 98 4.11.6.2. IDDES Model formulation 音着。普· 98 4.12. Large Eddy Simulation (LES)Model 4.12.1.Overview ·······:············;·:··.··········中····:·····中····中············· 99 4.12.2. Subgrid-Scale models 100 4.12.2.1. Smagorinsky-Lilly Model.......…,… 101 4.12.2.2. Dynamic Smagorinsky-Lilly Model 101 4.12.2.3. Wall-Adapting Local Eddy-Viscosity( 4.12.2.4. Algebraic Wall-Modeled LES Model (WMLES 普音···非音音 ·.·············: 103 4.12.2.4.1. Algebraic 4.12.2.4.1.1. Reynolds Number scaling .. 104 4.12.2.4.2. Algebraic WMleS S-Omega Model Formulation................105 4.12.2.5. Dynamic Kinetic Energy Subgrid-Scale Model.….….….…..…....106 4.123. Inlet Boundary Conditions for the LES Model 106 4.123.1. Vortex Method 106 4.12.3.2. Spectral Synthesizer 108 4.13. Embedded Large Eddy Simulation(ELES) ·······:··········:.··:····:· 109 4.13.1.Overvie Q 4.13. 2 Selecting a model....... 非·;自非··非·。··.音·音非·。··,非·非非非。非·。普非自·非·非··非非 109 4.13.3. Interfaces treatment 109 4.13,3.1 RANS-LES Interface . 4.13.3.2. LES-RANS Interface 110 4.13.3.3. Internal Interface Without les Zone..……,,…,……,,………,…11 4.13.34. Grid Generation Guidelines .........................................................................111 4.14. Near-Wall Treatments for Wall-Bounded turbulent flows 112 4.14.1. Overview 112 4.14.1.1.WallFunctionsvsNear-Wallmodelwwwww.w113 Release 15.@ SAS /P, Inc. All rights reserved -Contains proprietary and confidential information of Ansys inc. and its subsidiaries and affiliates Theory guide 4.14.1. 2 Wall Functions ······ 115 4.142 Standard wall functions 115 4.14.2.1. Momentum..……115 4.14.22. Energy………,…… ··········:·;····:··········:·:·····:·· 116 4.142.3.5 pecies..,,…,, 118 4.14.2. 4 Turbulence 118 4.143 Scalable wall functions 19 4.14.4.Non- Equilibrium Wall! Functions………….… ·······:··:···:·:·:····.··:······+······ 120 4.14.4.2. Limitations of the Wall Function Approach n Wall Functions 4.14.4.1.Standard Wall Functions vs Non-Equilibrium Wall Functions 121 ∴121 4.14.5. Enhanced Wall Treatment E-Equation(EWT-c 122 4.14.5.1.Two- Layer Model for enhanced wa‖ Treatment……………,122 414.5.2. Enhanced Wall| Treatment for Momentum and Energy equations…………….,124 4.14.6. Enhanced Wall Treatment w-Equation 4.14.7.User- Defined wa‖ Functions… 看导 127 4.14. 8 LES Near-Wall Treatment 127 4. 15. Curvature Correction for the Spalart-Allmaras and Two-Equation Models 128 4.16. Production Limiters for Two-Equation Models . 5. Heat Transfer ...............................................................................................................................133 5.1. Introduction ······:·····:···::·········::···:······::···:····:···:·.···::··::····:···:·····::···:·:······:···4·········· 133 5.2. Modeling Conductive and Convective Heat Transfer…..,,,…,,,,… 133 5.,2.1. Heat Transfer Theory…… 音自非音;自自非鲁。自非音非自自自自鲁非。自鲁,音着D自音非鲁非鲁曲着自。自自非自 ∴133 5.2.1.1. The Energy Equation……….….….….…..…..….….....……….133 52.1.2. The energy Equation in Moving Reference Frames……….…..........134 5.21.3. The Energy Equation for the non-Premixed Combustion Model…………,134 5.2.1.4. Inclusion of Pressure Work and Kinetic Energy Terms .135 5.2.1.5. Inclusion of the viscous dissipation Terms............ 135 5.2.1.6. Inclusion of the Species Diffusion Term ·········:······················ 135 5.2.1.7. Energy Sources due to Reaction............. ···· …136 5.2.1.8. Energy Sources Due To Radiation…………,… 136 5.2.1.9. Interphase energy Sources..................... 136 5.2.1.10. Energy equation in Solid Regions 136 52.1.11. Anisotropic Conductivity in Solids......,,…,……………137 5.2.1.12. Diffusion at inlets………………4137 52.2. Natural Convection and Buoyancy- Driven Flows Theory…………………………,137 5.3. Modeling Radiation…… ,非非··非·非·音非音非非D 138 5.3.1. Overview and limitations ...:...:..:.:a:..::a 138 5.3.1.1. Advantages and limitations of the dtrm 139 5.3.1.2. Advantages and Limitations of the p-1 Model...... 139 5.3.1.3. Advantages and Limitations of the rosseland model...... 140 5.3.1.4. Advantages and limitations of the do model 5.3.1.5. Advantages and Limitations of the $2S Model................... 140 5.3.2. Radiative Transfer equation 141 5.3.3. P-1 Radiation Model Theory …142 5.3.3.1. The P-1 Model equations 143 5.33.2. Anisotropic Scattering...,,…,…… ····:·:··:·中 144 5.333 Particulate effects in the p-1 Model 53.34. Boundary Condition Treatment for the p-1 Model at wa|ls……,,…………,……,145 5.3.3.5. Boundary Condition Treatment for the P-1 Model at Flow Inlets and Exits 53.4. Rosseland radiation Model Theory...….….…..,….….….,146 5.3.4.1.The rosseland Model equations ···········;···:··········:···4·.··········:··········· 146 5.34.2. Anisotropic Scattering..…… 147 Release 15.0-OSAS /P Inc A rights reserved -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates leery guide 5.3.4.3. Boundary Condition Treatment at Walls...... 147 5.3.4.4. Boundary Condition Treatment at Flow Inlets and Exits 147 5.3.5. Discrete Transfer Radiation Model(DTRM) Theory ·非普。自看音非非着非音音非非·非自非。着非非自非。音专非自非非非非非··鲁。。音非鲁D非自非 148 5.3.5.1. The DTRM Equations……….…….….….,….,…,.….....…..,148 5.3.5. 2 Ray Tracing 148 5.353. Clustering……… 149 5.3.5.4. Boundary Condition Treatment for the dtrm at walls 非。非音非音 150 5.3.5.5. Boundary Condition Treatment for the dtRm at Flow Inlets and exits …150 5.3.6. Discrete Ordinates(DO)Radiation Model Theory 150 53.6.1. The do Model equations.....,.,.,.,….…,…,…,…,151 5.3.6.2. Energy Coupling and the do mode …………………………152 5.3562.1. Limitations of do/ Energy Coupling…………,…,…………,,,.,153 5.3.6.3. Angular Discretization and Pixelation 153 5.3.64. Anisotropic Scattering………,…,…,…,…,…,…,…,…,…,…,…,,…………,156 5.3.6.5. Particulate effects in the do model 157 53.66. Boundary and Cel! Zone Condition Treatment at Opaque Walls.…………………,157 5.3.6.6.1. Gray Diffuse Walls 159 5.3.6.6.2.Non- Gray Diffuse Wa|ls..,,...,…,…,…,…,…,…,…,……,159 5.3.6.7. Cell Zone and Boundary Condition Treatment at Semi-Transparent Walls.. 160 5.3.6.7.1. Semi-Transparent Interior Wall 160 5.3.6.7.2. Specular Semi-Transparent Walls .······::·····.···············:···:·······:····4· 5.3.6.7.3. Diffuse Semi-Transparent Walls 163 5.3.6.74. Partially Diffuse Semi- Transparent Walls∴……………………………….,164 5.3.6.7.5. Semi-Transparent Exterior Walls 164 5.3.6.7.6, LimitatⅰonS∴ 非···音非·非·着非音·非非非·非非非··非非音非非非非非非·非·非鲁···看·,非··.·D自··非自非非着非非非·非非自·非非非非·非·非 166 5.3.6.7.7. Solid Semi-Transparent media 167 5.3.6.8. Boundary Condition Treatment at Specular Walls and Symmetry Boundaries ...........167 5.3.6.9. Boundary Condition Treatment at Periodic Boundaries 167 53.6.10. Boundary Condition Treatment at Flow Inlets and Exits……,…,…,………,167 53.7. Surface-to-Surface(S2S) Radiation Model Theory……… 167 5.3.7.1.Gray- Diffuse radiation.........,,.…….…,…………………167 5.3.7.2.TheS2 SModel equations…… 168 带D垂 5.3.7.3. Clustering 。音。丰·,。非非。音非。音·非非。音非非。·4·。非非非非影音··非。自普非。鲁非非。自.·非音.·。非·非鲁非鲁。音非音·非。4,·非非非 169 5.3.7.3.1. Clustering and view factors….………,169 53.7.32. Clustering and Radiosity.,,,…,,… .169 5.3.8. Radiation in Combusting Flows …………170 5.3.8.1. The Weighted-Sum-of-Gray-Gases Model 170 5.3.8.1.1. When the total( Static) Gas Pressure is Not Equal to1atm.………………,…,171 5.3.8.2. The Effect of Soot on the absorption Coefficient .........172 5.3.8.3. The Effect of Particles on the absorption Coefficient .. 5.3.9. Choosing a radiation model 172 5.3.9.1. External radiation∴…173 6. Heat Exchangers 175 61. The Macro heat Exchanger Model.....…..….….…….….…,175 6. 1.1. Overview of the macro heat exchanger models 175 6.1.2. Restrictions of the macro Heat Exchanger Models 6.1.3. Macro Heat Exchanger Model Theory ..··..··· 177 6.1.3.1. Streamwise Pressure Drop 6.1.3.2.. Heat transfer effectiveness.w.wwwwwowwwo..., 179 6. 1.3.3. Heat Rejection 180 6.1.3.4. Macro Heat Exchanger Group Connectivity……… 中.············;····:·;········:···中·····4··· 182 6. 2. The dual cell model ∴183 Release 15.@ SAS /P, Inc. All rights reserved -Contains proprietary and confidential information of Ansys inc. and its subsidiaries and affiliates Theory guide 6.2.1. Overview of the dual Cell model ........................................................................................183 6.2. 2 Restrictions of the dual cell model 183 62.3. Dual Cell Model Theory...,.,…,,,,,…,183 6.2.3.1. NTU Relations 184 6.232. Heat Rejection..,.,.,…,…,,,….,184 7 Species Transport and Finite- Rate Chemistry………… 非非·非·。着非非鲁非 187 7.1VolumetricReactionsw.wwwwwwwwwwowwwww...187 7.1.1. Species Transport Equations……,,…,,, ··:·· 187 7.1.1.1. Mass Diffusion in laminar flows. 7. 1.1.2. Mass diffusion in turbulent flows ..o..w.. 188 7.1.1.3. Treatment of Species Transport in the Energy equation 188 7. 1.1.4. Diffusion at Inlets ........................................................................................................189 7.1.2. The Generalized Finite-Rate Formulation for Reaction Modeling 7. 1.2.1.The Laminar Finite-Rate model 189 7.1.2. 2 Pressure-Dependent Reactions ............................. 192 7. 1.2.3. The Eddy-Dissipation Model ………,193 7.1.2.4.The Eddy-Dissipation Model for LES 194 7.1.2.5. The eddy-Dissipation-Concept (edo) Model 195 7.1.2.6.Thethickenedflamemodelmwwwwwowwowwww.196 7.1.2.7. The Relaxation to Chemical Equilibrium Model 198 7.2. Wall Surface Reactions and Chemical Vapor Deposition…………,,… 7.2.1. Surface Coverage reaction Rate modification………201 7. 2. 2. Reaction-Diffusion Balance for Surface Chemistry . 7.2.3. Slip Boundary Formulation for Low-Pressure Gas Systems 202 7, 3. Particle surface reactions 204 7.3.1. General Description ··*····:············:·· 204 7.3.2. ANSYS Fluent model formulation,…… ········;····;······;·· 4音非 205 7.3.3. Extension for Stoichiometries with Multiple gas Phase Reactants 206 7,3.4.Solid-solidreActions....wwwww..m.w.www...207 7.3.5. Solid Decomposition Reactions 207 7.3.6. Solid Deposition Reactions 207 7.3.7. Gaseous Solid Catalyzed Reactions on the Particle Surface ,208 74. Reacting Channel Model….… 鲁非。·。·,··。非非。普非。音中音普。·自。非。鲁着非。非·。看·音·自,。自非非普非·。自。音 208 7.4.1. Overview and limitations∴…208 74.2 Reacting Channel Model Theory………….….……,…,…………,…,208 7.4.2.1. Flow Inside the reacting channel ·······:····4·.····:··················:···················· 209 7.4.2.2. Surface Reactions in the reacting Channel.................................210 74.23. Porous Medium Inside Reacting Channel,….……..….….…….……….211 7.4.2.4 Outer flow in the shell 211 7. 5. Reactor Network model 212 7.5.1. Reactor Network Model Theory ..... 212 7.5.1.1. Reactor network temperature solution ····:······· 213 8. Non-Premixed Combustion 215 8.1. ntroduction………………………1215 8.2. Non-Premixed Combustion and Mixture Fraction Theory 215 82.1. Mixture Fraction Theory…………,…,…,…,…,…,…,……,………………………,216 8. 2.1.1. Definition of the mixture fraction 216 8.2.1.2. Transport equations for the mixture fraction ......................................................218 8.2.1.3. The non- Premiⅸ ed model for les∴ 219 8.2.1.4. Mixture Fraction Vs Equivalence Ratio.........................219 8.2.1.5. Relationship of mixture fraction to species mass fraction density and temperature.. 220 822 Modeling of Turbulence-Chemistry Interaction………… D4非非。;。。非自非非非自 221 Release 15.0-OSAS /P Inc A rights reserved -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates leery guide 8.2.2.1. Description of the Probability density Function 82.22. Derivation of mean Scalar values from the instantaneous mixture fraction…….………221 ·非非·d。.非自。· 222 8.22.3. The assumed-Shape pdf…….222 8.2.23.1.The double delta function pdf,.m.wwwwwwwwwwwwooowwwo 223 8.2.2.3.2. The B-Function PDF................. 223 82,3 Non-Adiabatic Extensions of the non -Premixed model wowwwwwwwwwwwww 224 8. 2.4. Chemistry Tabulation 227 824.1. Look-Up Tables for Adiabatic Systems………….….………………………227 8.2.4.2. 3D Look-Up Tables for Non-Adiabatic Systems 228 82.43. Generating Lookup Tables through automated Grid Refinement,……,…,,,…,,,230 8.3. Restrictions and special cases for Using the Non-Premixed model “········““·····=:··*··· 232 8.3.1. Restrictions on the mixture fraction Approach..........................232 8.3.2. Using the Non-Premixed Model for Liquid Fuel or Coal Combustion ..........235 8.3.3. Using the Non-Premixed Model with Flue Gas recycle 236 8.3.4. Using the Non-Premixed Model with the Inert Model ··.·:····.··· 237 834.1. Mixture Composition…… 237 8.3.4.1.1. Property Evaluation ·····.····.···················· 238 8.4. The Diffusion Flamelet Models Theory ···.···········:····::··.·:················:·:.··:····:···4·:··:····· 238 841. Restrictions and Assumptions……,…,…,…,…,…,…,…,…,…,…,…,…,…,…,…,…,,……238 842. The Flamelet Concept....................239 8.4.2.1.0 verview, …………239 8.4.2.2. Strain Rate and Scalar Dissipation 8.4.2.3. Embedding diffusion Flamelets in Turbulent Flames.....,............. 241 8.4.3. Flamelet generation .242 844F| amelet Import… .242 8.5. the steady diffusion flamelet model theory 244 8.5.1. Overview.………,1244 8.5.2. Multiple Steady Flamelet Libraries 245 8.5.3. Steady Diffusion Flamelet Automated Grid Refinement ...... ····.·······.····:···:····:·.·····.·· 245 8.5.4. Non-Adiabatic Steady diffusion Flamelets 246 86 The Unsteady Diffusion Flamelet Model Theory…………,…,………,…,…,…,………,………,246 8.6.1. The Eulerian Unsteady Laminar Flamelet Model 247 8:6.1.1. Liquid Reactions∴.…1249 86,2. The Diesel Unsteady Laminar Flamelet Model…………………………,249 863 Multiple Diesel Unsteady F| amulets…,…… 250 86.4. Multiple Diesel Unsteady Flamelets with Flamelet Reset…….….….….….….….….251 8.6.4.1. Resetting the flamelets 251 9. Premiκ ed combustion∴.253 9.1. Overview and Limitations 253 9.1.1. Overview 253 9.1.2. Limitations .......................................................................................................254 92c- Equation Model Theory.......,.,,,,……,… 254 9. 2.1. Propagation of the flame Front 254 9.3. G-Equation Model Theory......... 255 9.3. 1 Numerical Solution of the G-equation 257 94. Turbulent f| ame Speed Model..............…..…….……257 9.4.1. Zimont Turbulent Flame Speed Closure Model.. 257 9.4.1.1. Zimont Turbulent Flame Speed Closure for les........................... 259 9.4.1.2. Flame stretch effect.………,,, 259 9. 4.1.3. Gradient diffusio 260 94.1.4. Wall Damping…….…,,… 260 9.4.2. Peters Flame Speed model Release 15.@ SAS /P, Inc. All rights reserved -Contains proprietary and confidential information of Ansys inc. and its subsidiaries and affiliates

...展开详情
试读 127P ANSYS 15.0 Fluent Theory Guide
img
huaxiaobao123

关注 私信 TA的资源

上传资源赚积分,得勋章
    最新推荐
    ANSYS 15.0 Fluent Theory Guide 30积分/C币 立即下载
    1/127
    ANSYS 15.0 Fluent Theory Guide第1页
    ANSYS 15.0 Fluent Theory Guide第2页
    ANSYS 15.0 Fluent Theory Guide第3页
    ANSYS 15.0 Fluent Theory Guide第4页
    ANSYS 15.0 Fluent Theory Guide第5页
    ANSYS 15.0 Fluent Theory Guide第6页
    ANSYS 15.0 Fluent Theory Guide第7页
    ANSYS 15.0 Fluent Theory Guide第8页
    ANSYS 15.0 Fluent Theory Guide第9页
    ANSYS 15.0 Fluent Theory Guide第10页
    ANSYS 15.0 Fluent Theory Guide第11页
    ANSYS 15.0 Fluent Theory Guide第12页
    ANSYS 15.0 Fluent Theory Guide第13页
    ANSYS 15.0 Fluent Theory Guide第14页
    ANSYS 15.0 Fluent Theory Guide第15页
    ANSYS 15.0 Fluent Theory Guide第16页
    ANSYS 15.0 Fluent Theory Guide第17页
    ANSYS 15.0 Fluent Theory Guide第18页
    ANSYS 15.0 Fluent Theory Guide第19页
    ANSYS 15.0 Fluent Theory Guide第20页

    试读已结束,剩余107页未读...

    30积分/C币 立即下载 >