[![License CC BY-NC-SA 4.0](https://img.shields.io/badge/license-CC4.0-blue.svg)](https://github.com/Ha0Tang/HandGestureRecognition/blob/master/LICENSE.md)
![Packagist](https://img.shields.io/badge/Platform-MATLAB-orange)
![Last Commit](https://img.shields.io/github/last-commit/Ha0Tang/HandGestureRecognition)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-blue.svg)](https://github.com/Ha0Tang/HandGestureRecognition/graphs/commit-activity)
![Contributing](https://img.shields.io/badge/contributions-welcome-red.svg?style=flat)
![Ask Me Anything !](https://img.shields.io/badge/Ask%20me-anything-1abc9c.svg)
[![GitHub issues](https://img.shields.io/github/issues/Naereen/StrapDown.js.svg)](https://GitHub.com/Ha0Tang/HandGestureRecognition/issues/)
# Key Frames Extraction and Feature Fusion for Dynamic Hand Gesture Recognition
## Key Frames Extraction Framework
![Key Frames Extraction Framework](./imgs/framework_keyframe.jpg)
## Feature Fusion Module
![Feature Fusion Module](./imgs/framework_fusion.jpg)
### [Project page](http://disi.unitn.it/~hao.tang/project/HandGestureRecognition.html) | [Paper](https://arxiv.org/abs/1901.04622)
Fast and Robust Dynamic Hand Gesture Recognition via Key Frames Extraction and Feature Fusion.<br>
[Hao Tang](http://disi.unitn.it/~hao.tang/)<sup>1</sup>, [Hong Liu](https://scholar.google.com/citations?user=4CQKG8oAAAAJ&hl=en)<sup>2</sup>, Wei Xiao<sup>3</sup> and [Nicu Sebe](https://scholar.google.com/citations?user=stFCYOAAAAAJ&hl=en)<sup>1</sup>.<br>
<sup>1</sup>University of Trento, Italy, <sup>2</sup>Peking University, China, <sup>3</sup>Lingxi Artificial Intelligence Co., Ltd, China.<br>
In Neurocomputing 2019.
<br>
The repository offers the official implementation of our paper in MATLAB.
### [License](./LICENSE.md)
Copyright (C) 2019 University of Trento, Italy.
All rights reserved.
Licensed under the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) (**Attribution-NonCommercial-ShareAlike 4.0 International**)
The code is released for academic research use only. For commercial use, please contact [bjdxtanghao@gmail.com](bjdxtanghao@gmail.com).
## Installation
Clone this repo.
```bash
git clone https://github.com/Ha0Tang/HandGestureRecognition
cd HandGestureRecognition/
```
This code requires MATLAB. Please install it.
## Dataset Preparation
For Cambridge Hand Gesture or Northwestern Hand Gesture, the datasets must be downloaded beforehand. Please download them on the respective webpages. Please cite their papers if you use the data.
**Preparing Cambridge Hand Gesture Dataset**. The dataset can be downloaded [here](https://labicvl.github.io/ges_db.htm). You can also download this dataset use the following script:
```bash
bash ./datasets/download_handgesture_dataset.sh Cambridge_Hand_Gesture
```
**Preparing Northwestern Hand Gesture Dataset**. The dataset is proposed in this [paper](https://www.sciencedirect.com/science/article/pii/S0262885611001193). You can download this dataset use the following script:
```bash
bash ./datasets/download_handgesture_dataset.sh Northwestern_Hand_Gesture
```
**Preparing HandGesture Dataset**. This dataset consists of 132 video sequences of 640 by 360 resolution, each of which recorded from a
different subject (7 males and 4 females) with 12 different gestures (“0”-“9”, “NO” and “OK”). Download this dataset use the following script:
```bash
bash ./datasets/download_handgesture_dataset.sh HandGesture
```
**Preparing Action3D Dataset**. This dataset consists of 1620 image sequences of 6 hand gesture classes (box, high wave, horizontal wave, curl, circle and hand up), which are defined by 2 different hands (right and left hand) and 5 situations (sit, stand, with a pillow, with a laptop
and with a person). Each class contains 270 image sequences (5 different situations × 2 different hands × 3 times × 9 subjects). Each sequence was recorded in front of a fixed camera having roughly isolated gestures in space and time. All video sequences were uniformly resized into
320 × 240 in our method. Download this dataset use the following script:
```bash
bash ./datasets/download_handgesture_dataset.sh Action3D
```
## Training New Models
New models can be trained with the following commands.
1. Prepare your own dataset like in this [folder](https://github.com/Ha0Tang/HandGestureRecognition/tree/master/datasets/sample).
2. Extract key frame:
```bash
matlab -nodesktop -nosplash -r "key_frames_extraction"
```
Key frames will be extrated in the folder `./datasets/sample_keyframe`.
3. Go this [folder](https://github.com/Ha0Tang/HandGestureRecognition/tree/master/main_code) for further processes.
## Related Works
- [Clustering by Fast Search-and-Find of Density Peaks](https://people.sissa.it/~laio/Research/Res_clustering.php)
- [Gender Classification using Pyramid Segmentation for Unconstrained Back-Facing Video Sequences](https://www.researchgate.net/publication/311488680_Gender_Classification_Using_Pyramid_Segmentation_for_Unconstrained_Back-facing_Video_Sequences)
## Citation
If you use this code for your research, please cite our papers.
```
@article{tang2019fast,
title={Fast and Robust Dynamic Hand Gesture Recognition via Key Frames Extraction and Feature Fusion},
author={Tang, Hao and Liu, Hong and Xiao, Wei and Sebe, Nicu},
journal={Neurocomputing},
volume={331},
pages={424--433},
year={2019},
publisher={Elsevier}
}
```
## Acknowledgments
This work is partially supported by National Natural Science Foundation of China (NSFC, U1613209), Shen- zhen Key Laboratory for Intelligent Multimedia and Virtual Reality (ZDSYS201703031405467), Scientific Research Project of Shenzhen City (JCYJ20170306164738129).
## Contributions
If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([bjdxtanghao@gmail.com](bjdxtanghao@gmail.com)).
没有合适的资源?快使用搜索试试~ 我知道了~
利用超声波传感器和摄像头来检测和解释手的运动matlab实现.zip
共3个文件
m:2个
md:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 147 浏览量
2024-02-19
00:26:49
上传
评论
收藏 7KB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
利用超声波传感器和摄像头来检测和解释手的运动matlab实现.zip (3个子文件)
利用超声波传感器和摄像头来检测和解释手的运动matlab实现
Hand-Geustor-Sensor-main
cluster_dp.m 5KB
README.md 6KB
key_frames_extraction.m 2KB
共 3 条
- 1
资源评论
matlab科研助手
- 粉丝: 3w+
- 资源: 5951
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功