%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread("C:\Users\Suer\Desktop\室温稻种特征波段.xlsx",'sheet4');
%% 划分训练集和测试集
temp = randperm(600);
P_train = res(temp(1: 540), 1: 30)';
T_train = res(temp(1: 540), 31)';
M = size(P_train, 2);
P_test = res(temp(541: end), 1: 30)';
T_test = res(temp(541: end), 31)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 节点个数
inputnum = size(p_train, 1); % 输入层节点数
hiddennum = 5; % 隐藏层节点数
outputnum = size(t_train,1); % 输出层节点数
%% 建立网络
net = newff(p_train, t_train, hiddennum);
%% 设置训练参数
net.trainParam.epochs = 1000; % 训练次数
net.trainParam.goal = 1e-6; % 目标误差
net.trainParam.lr = 0.01; % 学习率
net.trainParam.showWindow = 0; % 关闭窗口
%% 参数初始化
c1 = 4.494; % 学习因子
c2 = 4.494; % 学习因子
maxgen = 50; % 种群更新次数
sizepop = 5; % 种群规模
Vmax = 1.0; % 最大速度
Vmin = -1.0; % 最小速度
popmax = 1.0; % 最大边界
popmin = -1.0; % 最小边界
%% 节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;
for i = 1 : sizepop
pop(i, :) = rands(1, numsum); % 初始化种群
V(i, :) = rands(1, numsum); % 初始化速度
fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end
%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值
%% 迭代寻优
for i = 1 : maxgen
for j = 1 : sizepop
% 速度更新
V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
V(j, (V(j, :) > Vmax)) = Vmax;
V(j, (V(j, :) < Vmin)) = Vmin;
% 种群更新
pop(j, :) = pop(j, :) + 0.2 * V(j, :);
pop(j, (pop(j, :) > popmax)) = popmax;
pop(j, (pop(j, :) < popmin)) = popmin;
% 自适应变异
pos = unidrnd(numsum);
if rand > 0.85
pop(j, pos) = rands(1, 1);
end
% 适应度值
fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);
end
for j = 1 : sizepop
% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j, :) = pop(j, :);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j, :);
fitnesszbest = fitness(j);
end
end
BestFit = [BestFit, fitnesszbest];
end
%% 提取最优初始权值和阈值
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...
+ hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);
%% 最优值赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1} = reshape(B1, hiddennum, 1);
net.b{2} = B2';
%% 打开训练窗口
net.trainParam.showWindow = 1; % 打开窗口
%% 网络训练
net = train(net, p_train, t_train);
%% 仿真预测
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2, 2)' ./ M);
error2 = sqrt(sum((T_sim2 - T_test) .^2, 2)' ./ N);
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 误差曲线迭代图
figure;
plot(1 : length(BestFit), BestFit, 'LineWidth', 1.5);
xlabel('粒子群迭代次数');
ylabel('适应度值');
xlim([1, length(BestFit)])
string = {'模型迭代误差变化'};
title(string)
grid on
%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
% MAE
mae1 = sum(abs(T_sim1 - T_train), 2)' ./ M ;
mae2 = sum(abs(T_sim2 - T_test ), 2)' ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1 - T_train, 2)' ./ M ;
mbe2 = sum(T_sim2 - T_test , 2)' ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
%% 绘制散点图
sz = 25;
c = 'b';
figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')
figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')
没有合适的资源?快使用搜索试试~ 我知道了~
基于粒子群优化BP神经网络的数据回归预测Matlab源码+数据集+界面截图+博客预览(一键运行,课程设计/期末大作业
共3个文件
m:2个
xlsx:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 58 浏览量
2024-08-15
22:44:32
上传
评论
收藏 15KB ZIP 举报
温馨提示
<项目介绍> https://blog.csdn.net/m0_73728511/article/details/141227582 运行main.m文件一键出图超级简单 实现平台:Matlab,中文注释非常清晰,非常适合新手小白上手。 程序均以调试好,按照示例数据修改格式,替换数据集即可运行,数据集为excel。 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的大作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
资源推荐
资源详情
资源评论
收起资源包目录
024_基于粒子群优化BP神经网络的数据回归预测.zip (3个子文件)
024_基于粒子群优化BP神经网络的数据回归预测
main.m 6KB
数据集.xlsx 14KB
fun.m 935B
共 3 条
- 1
资源评论
机智的程序员zero
- 粉丝: 2424
- 资源: 5033
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功