# CsvDataAnalyzer
A CSV file data analyzer using pure Python.
## Table of contents
* [About this repository](#about-this-repository)
* [Gallery](#gallery)
* [Requirements](#requirements)
* [Getting Started](#getting-started)
* [How to use](#how-to-use)
* [Reading CSV file](#reading-csv-file)
* [Calculating Statics](#calculating-statics)
* [Creating Graph](#creating-graph)
* [2D Line Graph](#2d-line-graph)
* [2D Scatter Graph](#2d-scatter-graph)
* [3D Line Graph](#3d-line-graph)
* [3D Scatter Graph](#3d-scatter-graph)
* [Histogram](#histogram)
* [Axis Equal](#axis-equal)
* [Kernel Density Estimation](#kernel-density-estimation)
* [License](#license)
* [Author](#author)
## About this repository
This is a CSV file data analyzer based on Python.
Features:
1. Easy to use.
2. Statistics(Sum, Mean, Std, Max and Min) of each data are calculated automatically.
3. It can create multiple 2/3D graph.
## Gallery
* Launched on Windows 10
![](img/gallery.PNG)
## Requirements
* Python 3.6.x or higher
* matplotlib
* mpl_toolkits
* numpy
* seaborn
* pandas
* tkinter
## Getting Started
1. Clone this repository.
2. Install required libraries.
3. Execute the following command and a GUI will be opened.
```shell script
$ python src/CsvDataAnalyzer.py
```
![](img/GUI.PNG)
## How to use
### Reading CSV file
* "Files" at left top of GUI -> "Read csv file"
![](img/Files_Read_CSV.PNG)
* A file dialog will be oped.
* Multiple CSV files can be selected too.
![](img/FileDialog.PNG)
* Reading will finish like this.
![](img/FinishedReading.PNG)
### Calculating Statics
* Max, Min, Mean and Sigma(Std) will be calculated automatically.
* Those values are displayed on GUI.
![](img/Statistics.PNG)
### Creating Graph
* Select data you want to analyze on GUI.
* Selected data is colored blue by left click.
![](img/SelectData.PNG)
* Set data to X axis by pushing "X Data Set".
![](img/XDataSet.PNG)
* Set another data to Y axis by pushing "Y Data Set".
![](img/YDataSet.PNG)
* Select plot color from pull-down menu.
![](img/PlotColor.PNG)
### 2D Line Graph
* After setting data, select "Create 2D Line" from "Figures" menu.
![](img/Create2DLine.PNG)
* A empty figure will be opened.
![](img/EmptyFigure.PNG)
* On the figure, click the right button. -> The 2D line graph will be shown.
![](img/2DLineGraph.PNG)
* Another data can be shown on the same figure.
![](img/2DLineGraphMulti.PNG)
### 2D Scatter Graph
* After setting data, select "Create 2D Scatter" from "Figures" menu.
![](img/Create2DScatter.PNG)
* By following the above procedure, the 2D scatter graph will be shown.
![](img/2DScatterGraph.PNG)
* By setting a color data to "C Data Set", a heatmap can be created.
![](img/CDataSet.PNG)
![](img/2DHeatMap.PNG)
* You can set min/max velues of color bar.
![](img/CMinMax.PNG)
![](img/2DColoredHeatMap.PNG)
### 3D Line Graph
* After setting data, select "Create 3D Line" from "Figures" menu.
![](img/Create3DLine.PNG)
* Set another data to "Z Data Set".
![](img/ZDataSet.PNG)
* By following the above procedure, a 3D line graph will be shown.
![](img/3DLineGraph.PNG)
### 3D Scatter Graph
* After setting data, select "Create 3D Scatter" from "Figures" menu.
![](img/Create3DScatter.PNG)
* By following the above procedure, a 3D scatter graph will be shown.
![](img/3DScatterGraph.PNG)
* 3D heatmap can be created too.
![](img/3DHeatMap.PNG)
### Histogram
* After setting data, select "Create 3D Histgram" from "Figures" menu.
![](img/CreateHistogram.PNG)
* This histogram shows X data distribution.
![](img/Histogram.PNG)
### Axis Equal
* You can switch ON/OFF from a pull-down menu "Axis Equal"".
![](img/AxisEqual.PNG)
### Kernel Density Estimation
* When a histogram graph is created, you can show a kernel density function together.
![](img/HistogramKde.PNG)
* You can switch ON/OFF from a pull-down menu "Hist KDE".
![](img/HistKde.PNG)
## License
MIT
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
该文件是一个基于python的csv文件数据可视化分析工具,包含了整个工具的python源代码。 Python 中的 CSV 文件数据可视化分析工具是利用 Python 的数据处理和可视化库,如 pandas、matplotlib 和 seaborn 等,对 CSV 格式数据进行清理、分析和可视化的工具。这类工具尤其适合数据分析人员和开发者进行数据探索和展示。 Python 具备丰富的数据处理功能,pandas 可以直接将 CSV 文件读取为 DataFrame 格式,支持筛选、过滤、数据聚合和缺失值处理等操作,便于快速清洗数据。通过 pandas 处理后的数据可以轻松与 matplotlib 和 seaborn 结合,以多种图表形式(如折线图、柱状图、散点图和热力图等)展现数据关系。 matplotlib 提供底层的图形绘制功能,可以进行精细化控制,而 seaborn 基于 matplotlib 构建,拥有更美观的默认样式,且提供数据分布、类别关系的高阶图表(如箱线图、回归图和成对图)。
资源推荐
资源详情
资源评论
收起资源包目录
基于python的csv文件数据可视化分析工具.rar (42个子文件)
基于python的csv文件数据可视化分析工具
README
src
ScatterCreator2D.py 3KB
LineCreator3D.py 2KB
HistgramCreator.py 1KB
CsvDataAnalyzer.py 12KB
ScatterCreator3D.py 4KB
LineCreator2D.py 2KB
data
sample.csv 13KB
LICENSE 1KB
README.txt 4KB
img
2DHeatMap.PNG 26KB
3DLineScatter.PNG 58KB
HistKde.PNG 802B
ZDataSet.PNG 6KB
3DLineGraph.PNG 80KB
2DScatterGraph.PNG 15KB
3DScatterGraph.PNG 58KB
Files_Read_CSV.PNG 18KB
EmptyFigure.PNG 16KB
HistogramKde.PNG 24KB
Create2DLine.PNG 39KB
Histogram.PNG 14KB
FileDialog.PNG 29KB
FinishedReading.PNG 23KB
2DColoredHeatMap.PNG 25KB
YDataSet.PNG 4KB
CreateHistogram.PNG 41KB
CDataSet.PNG 6KB
AxisEqual.PNG 818B
2DLineGraphMulti.PNG 45KB
Create3DLine.PNG 41KB
Create3DScatter.PNG 41KB
XDataSet.PNG 3KB
Create2DScatter.PNG 41KB
SelectData.PNG 14KB
2DLineGraph.PNG 32KB
CMinMax.PNG 975B
3DHeatMap.PNG 61KB
gallery.PNG 541KB
GUI.PNG 15KB
Statistics.PNG 11KB
PlotColor.PNG 32KB
requirements.txt 38B
共 42 条
- 1
资源评论
迎风打盹儿
- 粉丝: 668
- 资源: 74
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功