%% Power-flow study of IEEE 30 bus system
% Approximantion of the American Electric Power system around December 1961, using the Newton-Raphson method.
%% Bus data matrix
% Bus type 1 = Slack Bus (Reference bus, no eqs. needed)
% Bus type 2 = PV Bus (P and Q equations required)
% Bus type 3 = PQ Bus (P equation required)
% P = |V_i|*|V_j|*|Y_ij|*cos(theta_ij - delta_i + delta_j) - P_i
% Q = -|V_i|*|V_j|*|Y_ij|*sin(theta_ij - delta_i + delta_j) - Q_i
%###################################################################################
% | Bus | Bus | Vol | Vol | Generating | Load | Reactive Power limit |
% | N | type| Mag | angle | Pg | QG | Pl | Ql | Qmax | Qmin |
%###################################################################################
busdata= [ 1 1 1.06 0 0 0 0 0 0 0;
2 2 1.043 0 40 50.0 21.7 12.7 -40 50;
3 3 1.0 0 0 0 2.4 1.2 0 0;
4 3 1.06 0 0 0 7.6 1.6 0 0;
5 2 1.01 0 0 37.0 94.2 19.0 -40 40;
6 3 1.0 0 0 0 0.0 0.0 0 0;
7 3 1.0 0 0 0 22.8 10.9 0 0;
8 2 1.01 0 0 37.3 30.0 30.0 -10 40;
9 3 1.0 0 0 0 0.0 0.0 0 0;
10 3 1.0 0 0 19.0 5.8 2.0 0 0;
11 2 1.082 0 0 16.2 0.0 0.0 -6 24;
12 3 1.0 0 0 0 11.2 7.5 0 0;
13 2 1.071 0 0 10.6 0.0 0.0 -6 24;
14 3 1.0 0 0 0 6.2 1.6 0 0;
15 3 1.0 0 0 0 8.2 2.5 0 0;
16 3 1.0 0 0 0 3.5 1.8 0 0;
17 3 1.0 0 0 0 9.0 5.8 0 0;
18 3 1.0 0 0 0 3.2 0.9 0 0;
19 3 1.0 0 0 0 9.5 3.4 0 0;
20 3 1.0 0 0 0 2.2 0.7 0 0;
21 3 1.0 0 0 0 17.5 11.2 0 0;
22 3 1.0 0 0 0 0.0 0.0 0 0;
23 3 1.0 0 0 0 3.2 1.6 0 0;
24 3 1.0 0 0 4.3 8.7 6.7 0 0;
25 3 1.0 0 0 0 0.0 0.0 0 0;
26 3 1.0 0 0 0 3.5 2.3 0 0;
27 3 1.0 0 0 0 0.0 0.0 0 0;
28 3 1.0 0 0 0 0.0 0.0 0 0;
29 3 1.0 0 0 0 2.4 0.9 0 0;
30 3 1.0 0 0 0 10.6 1.9 0 0];
%############################################################################
% | From | To | R | X | B | Tap |
% | Bus | Bus | (p.u.) | (p.u.) | (p.u.) | Ratio |
%############################################################################
linedata=[ 1 2 0.0192 0.0575 0.0264 1
1 3 0.0452 0.1652 0.0204 1
2 4 0.0570 0.1737 0.0184 1
3 4 0.0132 0.0379 0.0042 1
2 5 0.0472 0.1983 0.0209 1
2 6 0.0581 0.1763 0.0187 1
4 6 0.0119 0.0414 0.0045 1
5 7 0.0460 0.1160 0.0102 1
6 7 0.0267 0.0820 0.0085 1
6 8 0.0120 0.0420 0.0045 1
6 9 0.0 0.2080 0.0 0.978
6 10 0.0 0.5560 0.0 0.969
9 11 0.0 0.2080 0.0 1
9 10 0.0 0.1100 0.0 1
4 12 0.0 0.2560 0.0 0.932
12 13 0.0 0.1400 0.0 1
12 14 0.1231 0.2559 0.0 1
12 15 0.0662 0.1304 0.0 1
12 16 0.0945 0.1987 0.0 1
14 15 0.2210 0.1997 0.0 1
16 17 0.0824 0.1923 0.0 1
15 18 0.1073 0.2185 0.0 1
18 19 0.0639 0.1292 0.0 1
19 20 0.0340 0.0680 0.0 1
10 20 0.0936 0.2090 0.0 1
10 17 0.0324 0.0845 0.0 1
10 21 0.0348 0.0749 0.0 1
10 22 0.0727 0.1499 0.0 1
21 23 0.0116 0.0236 0.0 1
15 23 0.1000 0.2020 0.0 1
22 24 0.1150 0.1790 0.0 1
23 24 0.1320 0.2700 0.0 1
24 25 0.1885 0.3292 0.0 1
25 26 0.2544 0.3800 0.0 1
25 27 0.1093 0.2087 0.0 1
28 27 0.0 0.3960 0.0 0.968
27 29 0.2198 0.4153 0.0 1
27 30 0.3202 0.6027 0.0 1
29 30 0.2399 0.4533 0.0 1
8 28 0.0636 0.2000 0.0214 1
6 28 0.0169 0.0599 0.065 1 ];
%##########################################################################
%% Data rearrangement in linedata
fb=linedata(:,1); % From Bus vector
tb=linedata(:,2); % To Bus vector
r=linedata(:,3); % Resistance vector (per unit)
x=1i*linedata(:,4); % Reactance vector (per unit)
b=1i*linedata(:,5); % Susceptance vector (per unit)
a=linedata(:,6); % Tap ratio
z=r+x; % Branch impedance
y=1./z; % Branch admittance
nl=length(fb); % Total branch number
No_of_Bus=max(max(fb),max(tb)); % Total bus number
%% Formation of Y matrix
Y=zeros(No_of_Bus,No_of_Bus); % Y matrix initialization
for k=1:nl % Y matrix iterative filling
Y(fb(k),tb(k))=Y(fb(k),tb(k))-y(k)/a(k);
Y(tb(k),fb(k))=Y(fb(k),tb(k));
end
for m=1:No_of_Bus % Iteration from 1 up to the total bus number (included)
for n=1:nl
if fb(n)==m % If iterated element is in the diagonal
Y(m,m)=Y(m,m)+y(n)/a(n)^2+b(n); % Transformer effects and node-ground susceptance
elseif tb(n)==m % If iterated element is not in the diagonal
Y(m,m)=Y(m,m)+y(n)+b(n); % Node-ground susceptance taken into account per element
end
end
end
G=real(Y); % Y matrix conductance
B=imag(Y); % Y matrix susceptance
%% Data rearrangement in busdata
BMva=100; % Base declaration for later p.u. transformations
% Busdata matrix division in vectors
busNo=busdata(:,1);
type=busdata(:,2);
V=busdata(:,3);
del=busdata(:,4);
Pg=busdata(:,5)/BMva;
Qg=busdata(:,6)/BMva;
Pl=busdata(:,7)/BMva;
Ql=busdata(:,8)/BMva;
Qmin=busdata(:
没有合适的资源?快使用搜索试试~ 我知道了~
IEEE 30 总线分配系统在 MATLAB 中使用不同的数值方法求解。.zip
共1个文件
m:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 21 浏览量
2024-04-26
22:43:03
上传
评论
收藏 5KB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
IEEE 30 总线分配系统在 MATLAB 中使用不同的数值方法求解。.zip (1个子文件)
IEEE 30 总线分配系统在 MATLAB 中使用不同的数值方法求解。
powerflow_analysis_ieee30-main
NewtonRaphson.m 13KB
共 1 条
- 1
资源评论
Matlab科研辅导帮
- 粉丝: 3w+
- 资源: 7774
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功