<div align="center">
<img src="resources/mmdet-logo.png" width="600"/>
<div> </div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div> </div>
[![PyPI](https://img.shields.io/pypi/v/mmdet)](https://pypi.org/project/mmdet)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdetection/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues)
[ðDocumentation](https://mmdetection.readthedocs.io/en/latest/) |
[ð ï¸Installation](https://mmdetection.readthedocs.io/en/latest/get_started.html) |
[ðModel Zoo](https://mmdetection.readthedocs.io/en/latest/model_zoo.html) |
[ðUpdate News](https://mmdetection.readthedocs.io/en/latest/notes/changelog.html) |
[ðOngoing Projects](https://github.com/open-mmlab/mmdetection/projects) |
[ð¤Reporting Issues](https://github.com/open-mmlab/mmdetection/issues/new/choose)
</div>
<div align="center">
English | [ç®ä½ä¸æ](README_zh-CN.md)
</div>
<div align="center">
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>
## Introduction
MMDetection is an open source object detection toolbox based on PyTorch. It is
a part of the [OpenMMLab](https://openmmlab.com/) project.
The main branch works with **PyTorch 1.6+**.
<img src="https://user-images.githubusercontent.com/12907710/187674113-2074d658-f2fb-42d1-ac15-9c4a695e64d7.png"/>
<details open>
<summary>Major features</summary>
- **Modular Design**
We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules.
- **Support of multiple tasks out of box**
The toolbox directly supports multiple detection tasks such as **object detection**, **instance segmentation**, **panoptic segmentation**, and **semi-supervised object detection**.
- **High efficiency**
All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) and [SimpleDet](https://github.com/TuSimple/simpledet).
- **State of the art**
The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward.
The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.
</details>
Apart from MMDetection, we also released [MMEngine](https://github.com/open-mmlab/mmengine) for model training and [MMCV](https://github.com/open-mmlab/mmcv) for computer vision research, which are heavily depended on by this toolbox.
## What's New
### Highlight
We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet).
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)
| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>
**v3.0.0** was released in 6/4/2023:
- Release MMDetection 3.0.0 official version
- Support S
没有合适的资源?快使用搜索试试~ 我知道了~
《AI大模型应用》-CVPR 2023第一届大模型比赛Track1第1名方案,队名:huster.zip
共2006个文件
py:1716个
md:215个
sh:30个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 199 浏览量
2024-07-10
18:13:48
上传
评论
收藏 10.72MB ZIP 举报
温馨提示
个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸!
资源推荐
资源详情
资源评论
收起资源包目录
《AI大模型应用》-CVPR 2023第一届大模型比赛Track1第1名方案,队名:huster.zip (2006个子文件)
readthedocs.css 1023B
readthedocs.css 1022B
readthedocs.css 145B
readthedocs.css 145B
.DS_Store 10KB
.DS_Store 8KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
404.html 522B
404.html 499B
custom.js 593B
custom.js 282B
det_train_val.json 4MB
det_val.json 1.02MB
vis_data.json 2KB
multi-task.json 531B
multi_label_ann.json 407B
ann.json 398B
changelog.md 48KB
changelog.md 48KB
changelog_v0.x.md 40KB
migration.md 35KB
migration.md 33KB
1_config.md 27KB
1_config.md 27KB
README.md 24KB
2_dataset_prepare.md 23KB
2_dataset_prepare.md 23KB
config.md 22KB
changelog.md 21KB
config.md 21KB
engine.md 18KB
engine.md 17KB
modules.md 16KB
modules.md 16KB
README_zh-CN.md 16KB
README_zh-CN.md 16KB
README.md 15KB
README.md 15KB
interface.md 15KB
schedule.md 15KB
interface.md 15KB
schedule.md 15KB
README.md 15KB
README.md 14KB
useful_tools.md 14KB
datasets.md 14KB
README.md 14KB
datasets.md 14KB
README.md 14KB
cam_visualization.md 13KB
cam_visualization.md 13KB
README.md 13KB
4_train_test.md 13KB
README.md 12KB
dataset_prepare.md 12KB
4_train_test.md 12KB
README.md 12KB
finetune_custom_dataset.md 12KB
README.md 12KB
finetune_custom_dataset.md 11KB
dataset_prepare.md 11KB
3_inference.md 11KB
3_inference.md 11KB
README.md 10KB
test.md 10KB
faq.md 10KB
README.md 10KB
models.md 9KB
test.md 9KB
2_dataset_prepare.md 9KB
README.md 9KB
models.md 9KB
README.md 9KB
README.md 9KB
faq.md 9KB
README.md 8KB
log_result_analysis.md 8KB
README.md 8KB
deployment.md 8KB
README.md 8KB
log_result_analysis.md 8KB
evaluation.md 8KB
README.md 8KB
train.md 8KB
README.md 8KB
get_started.md 8KB
train.md 8KB
visualization.md 8KB
runtime.md 8KB
pretrain_custom_dataset.md 8KB
add_models.md 8KB
add_models.md 8KB
visualization.md 8KB
get_started.md 7KB
evaluation.md 7KB
pretrain_custom_dataset.md 7KB
runtime.md 7KB
共 2006 条
- 1
- 2
- 3
- 4
- 5
- 6
- 21
资源评论
季风泯灭的季节
- 粉丝: 1931
- 资源: 3370
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功