# Yolo v4, v3 and v2 for Windows and Linux
## (neural networks for object detection)
* Paper **YOLOv7**: https://arxiv.org/abs/2207.02696
* source code YOLOv7 - Pytorch (use to reproduce results): https://github.com/WongKinYiu/yolov7
----
* Paper **YOLOv4**: https://arxiv.org/abs/2004.10934
* source code YOLOv4 - Darknet (use to reproduce results): https://github.com/AlexeyAB/darknet
----
* Paper **Scaled-YOLOv4 (CVPR 2021)**: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Scaled-YOLOv4_Scaling_Cross_Stage_Partial_Network_CVPR_2021_paper.html
* source code Scaled-YOLOv4 - Pytorch (use to reproduce results): https://github.com/WongKinYiu/ScaledYOLOv4
----
### YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
* **Paper**: https://arxiv.org/abs/2207.02696
* **source code - Pytorch (use to reproduce results):** https://github.com/WongKinYiu/yolov7
YOLOv7 is more accurate and faster than YOLOv5 by **120%** FPS, than YOLOX by **180%** FPS, than Dual-Swin-T by **1200%** FPS, than ConvNext by **550%** FPS, than SWIN-L by **500%** FPS, than PPYOLOE-X by **150%** FPS.
YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100, batch=1.
* YOLOv7-e6 (55.9% AP, 56 FPS V100 b=1) by `+500%` FPS faster than SWIN-L C-M-RCNN (53.9% AP, 9.2 FPS A100 b=1)
* YOLOv7-e6 (55.9% AP, 56 FPS V100 b=1) by `+550%` FPS faster than ConvNeXt-XL C-M-RCNN (55.2% AP, 8.6 FPS A100 b=1)
* YOLOv7-w6 (54.6% AP, 84 FPS V100 b=1) by `+120%` FPS faster than YOLOv5-X6-r6.1 (55.0% AP, 38 FPS V100 b=1)
* YOLOv7-w6 (54.6% AP, 84 FPS V100 b=1) by `+1200%` FPS faster than Dual-Swin-T C-M-RCNN (53.6% AP, 6.5 FPS V100 b=1)
* YOLOv7x (52.9% AP, 114 FPS V100 b=1) by `+150%` FPS faster than PPYOLOE-X (51.9% AP, 45 FPS V100 b=1)
* YOLOv7 (51.2% AP, 161 FPS V100 b=1) by `+180%` FPS faster than YOLOX-X (51.1% AP, 58 FPS V100 b=1)
----
![more5](https://user-images.githubusercontent.com/4096485/179425274-f55a36d4-8450-4471-816b-8c105841effd.jpg)
----
![image](https://user-images.githubusercontent.com/4096485/177675030-a929ee00-0eba-4d93-95c2-225231d0fd61.png)
----
More details in articles on medium:
- [Scaled_YOLOv4](https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-ms-coco-dataset-39dfa22fa982?source=friends_link&sk=c8553bfed861b1a7932f739d26f487c8)
- [YOLOv4](https://medium.com/@alexeyab84/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe?source=friends_link&sk=6039748846bbcf1d960c3061542591d7)
Manual: https://github.com/AlexeyAB/darknet/wiki
Discussion:
- [Reddit](https://www.reddit.com/r/MachineLearning/comments/gydxzd/p_yolov4_the_most_accurate_realtime_neural/)
- [Google-groups](https://groups.google.com/forum/#!forum/darknet)
- [Discord](https://discord.gg/zSq8rtW)
About Darknet framework: http://pjreddie.com/darknet/
[![Darknet Continuous Integration](https://github.com/AlexeyAB/darknet/workflows/Darknet%20Continuous%20Integration/badge.svg)](https://github.com/AlexeyAB/darknet/actions?query=workflow%3A%22Darknet+Continuous+Integration%22)
[![CircleCI](https://circleci.com/gh/AlexeyAB/darknet.svg?style=svg)](https://circleci.com/gh/AlexeyAB/darknet)
[![Contributors](https://img.shields.io/github/contributors/AlexeyAB/Darknet.svg)](https://github.com/AlexeyAB/darknet/graphs/contributors)
[![License: Unlicense](https://img.shields.io/badge/license-Unlicense-blue.svg)](https://github.com/AlexeyAB/darknet/blob/master/LICENSE)
[![DOI](https://zenodo.org/badge/75388965.svg)](https://zenodo.org/badge/latestdoi/75388965)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2004.10934-B31B1B.svg)](https://arxiv.org/abs/2004.10934)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2011.08036-B31B1B.svg)](https://arxiv.org/abs/2011.08036)
[![colab](https://user-images.githubusercontent.com/4096485/86174089-b2709f80-bb29-11ea-9faf-3d8dc668a1a5.png)](https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE)
[![colab](https://user-images.githubusercontent.com/4096485/86174097-b56b9000-bb29-11ea-9240-c17f6bacfc34.png)](https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg)
- [YOLOv4 model zoo](https://github.com/AlexeyAB/darknet/wiki/YOLOv4-model-zoo)
- [Requirements (and how to install dependencies)](#requirements-for-windows-linux-and-macos)
- [Pre-trained models](#pre-trained-models)
- [FAQ - frequently asked questions](https://github.com/AlexeyAB/darknet/wiki/FAQ---frequently-asked-questions)
- [Explanations in issues](https://github.com/AlexeyAB/darknet/issues?q=is%3Aopen+is%3Aissue+label%3AExplanations)
- [Yolo v4 in other frameworks (TensorRT, TensorFlow, PyTorch, OpenVINO, OpenCV-dnn, TVM,...)](#yolo-v4-in-other-frameworks)
- [Datasets](#datasets)
- [Yolo v4, v3 and v2 for Windows and Linux](#yolo-v4-v3-and-v2-for-windows-and-linux)
- [(neural networks for object detection)](#neural-networks-for-object-detection)
- [GeForce RTX 2080 Ti](#geforce-rtx-2080-ti)
- [Youtube video of results](#youtube-video-of-results)
- [How to evaluate AP of YOLOv4 on the MS COCO evaluation server](#how-to-evaluate-ap-of-yolov4-on-the-ms-coco-evaluation-server)
- [How to evaluate FPS of YOLOv4 on GPU](#how-to-evaluate-fps-of-yolov4-on-gpu)
- [Pre-trained models](#pre-trained-models)
- [Requirements for Windows, Linux and macOS](#requirements-for-windows-linux-and-macos)
- [Yolo v4 in other frameworks](#yolo-v4-in-other-frameworks)
- [Datasets](#datasets)
- [Improvements in this repository](#improvements-in-this-repository)
- [How to use on the command line](#how-to-use-on-the-command-line)
- [For using network video-camera mjpeg-stream with any Android smartphone](#for-using-network-video-camera-mjpeg-stream-with-any-android-smartphone)
- [How to compile on Linux/macOS (using `CMake`)](#how-to-compile-on-linuxmacos-using-cmake)
- [Using also PowerShell](#using-also-powershell)
- [How to compile on Linux (using `make`)](#how-to-compile-on-linux-using-make)
- [How to compile on Windows (using `CMake`)](#how-to-compile-on-windows-using-cmake)
- [How to compile on Windows (using `vcpkg`)](#how-to-compile-on-windows-using-vcpkg)
- [How to train with multi-GPU](#how-to-train-with-multi-gpu)
- [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
- [How to train tiny-yolo (to detect your custom objects)](#how-to-train-tiny-yolo-to-detect-your-custom-objects)
- [When should I stop training](#when-should-i-stop-training)
- [Custom object detection](#custom-object-detection)
- [How to improve object detection](#how-to-improve-object-detection)
- [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
- [How to use Yolo as DLL and SO libraries](#how-to-use-yolo-as-dll-and-so-libraries)
- [Citation](#citation)
![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
![scaled_yolov4](https://user-images.githubusercontent.com/4096485/112776361-281d8380-9048-11eb-8083-8728b12dcd55.png) AP50:95 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2011.08036
----
![modern_gpus](https://user-images.githubusercontent.com/4096485/82835867-f1c62380-9ecd-11ea-9134-1598ed2abc4b.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934
tkDNN-TensorRT accelerates YOLOv4 **~2x** times for batch=1 and **3x-4x** times for batch=4.
- tkDNN: https://github.com/ceccocats/tkDNN
- OpenCV: https://gist.github.com/YashasSamaga/48bdb167303e10f4d07b754888ddbdcf
### GeForce RTX 2080 Ti
| Network Size | Darknet, FPS (avg) | tkDNN TensorRT FP32, FPS | tkDNN TensorRT FP16, FPS | OpenCV FP16, FPS | tkDNN TensorRT FP16 batch=4, FPS | O
没有合适的资源?快使用搜索试试~ 我知道了~
yolo论文系列-v1-v8
共2000个文件
png:1520个
cfg:145个
c:71个
8 下载量 100 浏览量
2024-02-13
01:24:36
上传
评论
收藏 142.17MB RAR 举报
温馨提示
yolo发展v1-v8全系列包括在内,包括论文,开源代码,数据来源
资源推荐
资源详情
资源评论
收起资源包目录
yolo论文系列-v1-v8 (2000个子文件)
libpthreadGC2.a 91KB
gemm.c 102KB
parser.c 93KB
detector.c 76KB
data.c 75KB
convolutional_layer.c 65KB
conv_lstm_layer.c 59KB
network.c 51KB
yolo_layer.c 51KB
image.c 48KB
classifier.c 45KB
gaussian_yolo_layer.c 36KB
blas.c 32KB
box.c 29KB
go.c 26KB
lstm_layer.c 25KB
utils.c 24KB
softmax_layer.c 24KB
region_layer.c 22KB
dark_cuda.c 20KB
darknet.c 19KB
batchnorm_layer.c 17KB
gru_layer.c 15KB
demo.c 15KB
coco.c 14KB
rnn.c 14KB
connected_layer.c 14KB
maxpool_layer.c 14KB
crnn_layer.c 14KB
getopt.c 13KB
layer.c 13KB
yolo.c 12KB
shortcut_layer.c 12KB
activations.c 12KB
detection_layer.c 12KB
captcha.c 11KB
compare.c 11KB
rnn_layer.c 10KB
nightmare.c 9KB
kmeansiou.c 9KB
local_layer.c 9KB
cifar.c 8KB
matrix.c 8KB
rnn_vid.c 7KB
deconvolutional_layer.c 6KB
normalization_layer.c 6KB
route_layer.c 5KB
scale_channels_layer.c 5KB
representation_layer.c 5KB
voxel.c 5KB
tag.c 4KB
writing.c 4KB
cost_layer.c 4KB
im2col.c 4KB
super.c 4KB
tree.c 4KB
dice.c 4KB
col2im.c 4KB
sam_layer.c 3KB
option_list.c 3KB
upsample_layer.c 3KB
reorg_layer.c 3KB
reorg_old_layer.c 3KB
dropout_layer.c 3KB
crop_layer.c 3KB
swag.c 2KB
cpu_gemm.c 2KB
avgpool_layer.c 2KB
list.c 2KB
activation_layer.c 2KB
art.c 2KB
gettimeofday.c 1KB
cspx-p7-mish_hp.cfg 30KB
cspx-p7-mish.cfg 27KB
yolov4-p6.cfg 24KB
resnet152_trident.cfg 23KB
resnet152_trident.cfg 23KB
densenet201_yolo.cfg 20KB
densenet201.cfg 19KB
yolov4-p5-frozen.cfg 19KB
yolov4-p5-frozen.cfg 19KB
yolov4-p5.cfg 19KB
yolov4-p5.cfg 19KB
yolov4-csp-x-swish.cfg 16KB
yolov4-csp-x-swish.cfg 16KB
yolov4-csp-x-swish-frozen.cfg 16KB
yolov4-csp-x-mish.cfg 16KB
resnext152-32x4d.cfg 16KB
resnext152-32x4d.cfg 16KB
resnet152_yolo.cfg 15KB
resnet152.cfg 15KB
resnet152.cfg 15KB
yolov4x-mish.cfg 15KB
cspx-p7-mish-omega.cfg 15KB
cspx-p7-mish-omega.cfg 15KB
yolov4-sam-mish-csp-reorg-bfm.cfg 14KB
yolov4-csp-swish.cfg 14KB
yolov4-csp.cfg 13KB
efficientnet-lite3.cfg 12KB
efficientnet-lite3.cfg 12KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
AdvancementofKonja
- 粉丝: 35
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于dubbo-go、gin的集成项目资料齐全+详细文档.zip
- 基于dubbo2.5.3开发的监控平台,兼容了dubbo-admin的特性,有redis、mysql两个版本资料齐全+详细文档.zip
- 基于Dubbo的agent探针数据采集模块资料齐全+详细文档.zip
- 基于Dubbo-RPC的分布式配置服务中心资料齐全+详细文档.zip
- 基于dubbo的分布式工程开发规范实例工程,分布式跟踪、ID生成、分布式事务、分布式治理、分表分库、分布式锁、选举、分布式配置、API文档生成器...资料齐全+详细文档.zip
- 基于Dubbo的分布式任务调度系统资料齐全+详细文档.zip
- 基于dubbo的分布式商城资料齐全+详细文档.zip
- 基于dubbo的分布式数据库事务资料齐全+详细文档.zip
- @Transactional事务,太坑了!前言 对于从事java开发工作的同学来说,Spring的事务肯定再熟悉不过了
- 基于dubbo的微服务架构资料齐全+详细文档.zip
- 基于dubbo第三方支付系统资料齐全+详细文档.zip
- 基于Dubbo框架的raft算法库资料齐全+详细文档.zip
- 基于dubbo框架+leveldb存储构建高可用的事件通讯组件资料齐全+详细文档.zip
- 基于Dubbo分布式简易支付系统资料齐全+详细文档.zip
- 基于Dubbo埋点的分布式调用跟踪系统资料齐全+详细文档.zip
- 基于Dubbo微服务项目快速搭建脚手架,提供基础功能,方便企业快速搭建项目。资料齐全+详细文档.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功