## pytorch YOLO-v1
[中文](中文.md) [博客](https://www.cnblogs.com/xiongzihua/p/9315183.html)
**This is a experimental repository, which are not exactly the same as the original [paper](https://arxiv.org/pdf/1506.02640.pdf), our performance on voc07test is 0.665 map, 57fps@1080ti**
I write this code for the purpose of learning. In yoloLoss.py, i write forward only, with autograd mechanism, backward will be done automatically.
For the convenience of using pytorch pretrained model, our backbone network is resnet50, add an extra block to increase the receptive field, in addition, we drop Fully connected layer.
Effciency has not been optimized. It may be faster... I don't know
![](person_result.jpg)
![](dog_result.jpg)
## Train on voc2012+2007
| model | backbone | map@voc2007test | FPS |
| -------------------- | -------------- | ---------- | ------- |
| our ResNet_YOLO | ResNet50 | 66.5% | 57 |
| YOLO | darknet19? | 63.4% | 45 |
| YOLO VGG-16 | VGG-16 | 66.4% | 21 |
### 1. Dependency
- pytorch 0.2.0_2
- opencv
- visdom
- tqdm
### 2. Prepare
1. Download voc2012train dataset
2. Download voc2007test dataset
3. put all images in one folder, i have provide txt annotation file
~~3. Convert xml annotations to txt file, for the purpose of using dataset.py, you should put the xml_2_txt.py in the same folder of voc dataset, or change *Annotations* path in xml_2_txt.py~~
### 3. Train
Run python train.py
*Be careful:* 1. change the image file path 2. I recommend you install [visdom](https://github.com/facebookresearch/visdom) and run it
### 4. Evaluation
Run python eval_voc.py
*be careful* 1. change the image file path
### 5. result
Our map in voc2007 test set is 0.665~ some result are below, you can see more in testimg folder.
![](testimg/000283.jpg)
![](testimg/000058.jpg)
![](testimg/000059.jpg)
![](testimg/000097.jpg)
![](testimg/001757.jpg)
![avatar](https://profile-avatar.csdnimg.cn/d9e74cbad3704de093d94c920a8b3fc9_wcl291121957.jpg!1)
脑洞笔记
- 粉丝: 3707
- 资源: 1263
最新资源
- 被忽视的成本:中国城市扩张导致的生态系统服务损失从三耦合的角度来看
- 永磁同步电机PMSM参数辨识的粒子群优化算法实现流程解析与案例探索,基于粒子群优化算法的PMSM参数精准辨识与迭代更新策略,基于粒子群优化算法的永磁同步电机PMSM参数辨识 关键词:永磁同步电机 粒子
- 揭示城市扩张对植被碳的影响封存能力-以长江经济带为例(软件翻译)
- 双馈风电机组与同步发电机组四机两区域Simulink仿真建模及风光储联合调频与多种控制策略结合混合储能技术研究,双馈风电机组与同步发电机组四机两区域Simulink仿真建模及风光储联合调频控制策略,混
- 电气安装工 初级工.pdf
- 清华大学:普通人如何抓住DeepSeek红利
- Swift 编程语言的入门教程,适合零基础或有一定编程经验的读者快速上手
- 清华出品(104页)DeepSeek从入门到精通
- DeepSeek指导手册(24页)
- 研究机翼在不同速度下产生的噪音和性能表现
- JimuFlow RPA工具MacOS版v1.0.0
- MATLAB滚动轴承故障机理建模与仿真分析:基于ODE45的数值计算与多类型故障诊断预测研究,MATLAB轴承动力学模拟:滚动轴承故障机理建模与数值计算,多故障类型模拟及数据分析报告(含故障类型识别与
- 基于改进Relief算法的特征选取与关联向量机在短期负荷预测中的Matlab应用复现,基于改进Relief算法的特征选取与关联向量机在短期负荷预测中的实践(Matlab复现),相关向量机和特征选取技术
- COMSOL模拟技术揭秘:金属合金凝固过程及连铸工艺精确分析-相场流场与温度场的综合运用探究坯壳厚度计算,金属合金凝固与连铸过程数值模拟:相场流场温度场分析下的坯壳厚度计算,comsol数值模拟
- JimuFlow RPA工具Ubuntu版v1.0.0
- 煤层瓦斯渗透扩散与煤体孔隙裂隙二重介质特性研究-基于修正的P-M渗透率模型与气固耦合效应的模拟分析,煤层瓦斯渗透扩散的深部采煤模型研究:建立孔隙裂隙二重介质特性P-M渗透率模型与气固耦合模型的解析
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)