# High-resolution networks (HRNets) for object detection
## Introduction
[ALGORITHM]
```latex
@inproceedings{SunXLW19,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
booktitle={CVPR},
year={2019}
}
@article{SunZJCXLMWLW19,
title={High-Resolution Representations for Labeling Pixels and Regions},
author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao
and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
journal = {CoRR},
volume = {abs/1904.04514},
year={2019}
}
```
## Results and Models
### Faster R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:| :--------:|
| HRNetV2p-W18 | pytorch | 1x | 6.6 | 13.4 | 36.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130_211246.log.json) |
| HRNetV2p-W18 | pytorch | 2x | 6.6 | | 38.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731.log.json) |
| HRNetV2p-W32 | pytorch | 1x | 9.0 | 12.4 | 40.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130_204442.log.json) |
| HRNetV2p-W32 | pytorch | 2x | 9.0 | | 41.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927.log.json) |
| HRNetV2p-W40 | pytorch | 1x | 10.4 | 10.5 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210_125315.log.json) |
| HRNetV2p-W40 | pytorch | 2x | 10.4 | | 42.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033.log.json) |
### Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:|:------:|:--------:|
| HRNetV2p-W18 | pytorch | 1x | 7.0 | 11.7 | 37.7 | 34.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205_232523.log.json) |
| HRNetV2p-W18 | pytorch | 2x | 7.0 | - | 39.8 | 36.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212_134222.log.json) |
| HRNetV2p-W32 | pytorch | 1x | 9.4 | 11.3 | 41.2 | 37.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207_055017.log.json) |
| HRNetV2p-W32 | pytorch | 2x | 9.4 | - | 42.5 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213_150518.log.json) |
| HRNetV2p-W40 | pytorch | 1x | 10.9 | | 42.1 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646.log.json) |
| HRNetV2p-W40 | pytorch | 2x | 10.9 | | 42.8 | 38.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732.log.json) |
### Cascade R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------: | :--------: |
| HRNetV2p-W18 | pytorch | 20e | 7.0 | 11.0 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210_105632.log.json) |
| HRNetV2p-W32 | pytorch | 20e | 9.4 | 11.0 | 43.3 | [config]
没有合适的资源?快使用搜索试试~ 我知道了~
基于计算机视觉mmdetection框架的半导体芯片OCR系统python实现源码+项目说明.zip
共2000个文件
py:1604个
jpg:186个
md:170个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 157 浏览量
2024-08-09
16:59:55
上传
评论
收藏 84.99MB ZIP 举报
温馨提示
基于mmdetection框架的半导体芯片OCR系统python实现源码+项目说明.zip 使用: 1、进入虚拟环境 2、进入文件夹下 3、创建WORK_DIR文件夹输入命令开始训练 python tools/train.py configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py --work-dir WORK_DIR --gpus 1 python tools/train.py WORK_DIR/faster_rcnn_r50_fpn_1x_voc0712.py 4、测试 python demo/image_demo.py demo/0019.jpg WORK_DIR/faster_rcnn_r50_fpn_1x_voc0712.py WORK_DIR/epoch_200.pth 5、作图 python tools/analysis_tools/analyze_logs.py plot_curve WORK_DIR/20210321_141247.log.json --keys
资源推荐
资源详情
资源评论
收起资源包目录
基于计算机视觉mmdetection框架的半导体芯片OCR系统python实现源码+项目说明.zip (2000个子文件)
Dockerfile 817B
pytest.ini 293B
MMDet_Tutorial.ipynb 2.31MB
inference_demo.ipynb 1.02MB
0231.jpg 266KB
demo.jpg 254KB
0184.jpg 252KB
0170.jpg 251KB
0223.jpg 249KB
0155.jpg 236KB
0198.jpg 235KB
0108.jpg 222KB
0221.jpg 221KB
0150.jpg 218KB
0047.jpg 215KB
0004.jpg 214KB
0130.jpg 211KB
0011.jpg 211KB
0120.jpg 209KB
0143.jpg 207KB
0212.jpg 203KB
0114.jpg 201KB
0082.jpg 201KB
0102.jpg 201KB
0144.jpg 197KB
0220.jpg 191KB
0097.jpg 187KB
0040.jpg 183KB
0107.jpg 181KB
0137.jpg 180KB
0243.jpg 179KB
coco_test_12510.jpg 179KB
0098.jpg 178KB
0131.jpg 176KB
0260.jpg 174KB
0003.jpg 174KB
0190.jpg 166KB
0041.jpg 163KB
0075.jpg 158KB
0259.jpg 154KB
0164.jpg 153KB
0159.jpg 153KB
0083.jpg 149KB
0021.jpg 149KB
0251.jpg 142KB
0063.jpg 138KB
0085.jpg 136KB
0189.jpg 134KB
0199.jpg 134KB
0181.jpg 131KB
0154.jpg 125KB
0077.jpg 118KB
0129.jpg 117KB
0149.jpg 116KB
0261.jpg 116KB
0052.jpg 115KB
0059.jpg 113KB
0119.jpg 112KB
0045.jpg 111KB
0176.jpg 110KB
0050.jpg 109KB
0069.jpg 108KB
0060.jpg 108KB
0016.jpg 108KB
0018.jpg 107KB
0062.jpg 105KB
0142.jpg 104KB
0165.jpg 102KB
0152.jpg 100KB
0058.jpg 99KB
0094.jpg 98KB
0110.jpg 97KB
0255.jpg 96KB
0103.jpg 95KB
0175.jpg 93KB
0089.jpg 92KB
0066.jpg 91KB
0037.jpg 90KB
0067.jpg 89KB
0090.jpg 88KB
0009.jpg 88KB
0091.jpg 88KB
0068.jpg 87KB
0115.jpg 87KB
0080.jpg 87KB
0245.jpg 86KB
0012.jpg 86KB
0101.jpg 85KB
0105.jpg 85KB
0228.jpg 84KB
0043.jpg 83KB
0048.jpg 82KB
0116.jpg 82KB
0132.jpg 82KB
0007.jpg 81KB
0070.jpg 81KB
0248.jpg 80KB
0193.jpg 79KB
0064.jpg 77KB
0183.jpg 75KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
.whl
- 粉丝: 3917
- 资源: 4859
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于LSTM的淘宝商品评论分析系统详细文档+全部资料+优秀项目.zip
- 基于MKR模型的图书推荐系统 torch+flask+mysql——NLP详细文档+全部资料+优秀项目.zip
- 基于NLP的微博舆情分析系统详细文档+全部资料+优秀项目.zip
- 基于nlp的医疗问答系统详细文档+全部资料+优秀项目.zip
- 基于NLP和KNN的任务推荐系统详细文档+全部资料+优秀项目.zip
- 基于检索的问答系统详细文档+全部资料+优秀项目.zip
- 基于开放域事件提取的社会心态交互式挖掘与引导系统详细文档+全部资料+优秀项目.zip
- 基于篇章结构自动作文评分系统详细文档+全部资料+优秀项目.zip
- 基于实现一个舆情监控系统,具体基于对知乎热榜话题的数据抓取、分析与可视化。详细文档+全部资料+优秀项目.zip
- 基于文档的问答系统详细文档+全部资料+优秀项目.zip
- 基于医药知识图谱的智能问答系统详细文档+全部资料+优秀项目.zip
- 基于一个NLP旅游景点问答系统,基于BM25,Fuzzy算法实现详细文档+全部资料+优秀项目.zip
- 基于自然语言处理的智能医疗诊断系统详细文档+全部资料+优秀项目.zip
- 餐具包装纸袋包装机(sw12可编辑+CAD+说明书)全套技术开发资料100%好用.zip
- 岚精灵扫码挪车系统(移动端)(用户端-管理端)
- QWG(RZ)22-2004 高强度焊接结构用热连轧钢板和钢带.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功