馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Disabling wandb](#disabling-wandb)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
* training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
* To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【资源说明】 1、推荐下载anaconda和pycharm打开工程,在anaconda中新建python3.8环境 2、csdn下载资源解压重命名后,cd到项目文件夹,执行命名pip install -r requirements.txt 3、安装好第2步中的软件包后,如果要检测本地视频,需要先运行提取背景.py提取视频背景图片,根据背景图片大小,修改main.py第161行坐标(有注释),自定义违停区域。然后pycharm中运行main.py即可打开界面,选取视频进行违停车辆检测,同理检测网络摄像头实时画面、rtsp视频流,都可以自定义违停区域。 4、模型精度很高,上万张数据训练,检测car、bus、truck三种车型违停,当然你也可以自己数据集训练,检测更多车辆违停行为。 备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值不仅适用于小白学习入门进阶。也可作为毕设项目
资源推荐
资源详情
资源评论
收起资源包目录
毕设新项目-基于深度学习的车辆违停识别检测告警系统python源码(含模型+GUI界面+评估指标曲线(包运行).zip (216个子文件)
Dockerfile 821B
.gitignore 50B
PyQt5-YOLOv5-yolov5_v6.1.iml 495B
2023_05_29_14_15_04.jpg 5.02MB
2023_05_29_14_08_29.jpg 5.01MB
2023_05_29_14_09_49.jpg 5.01MB
2023_05_29_14_07_06.jpg 5.01MB
2023_05_29_13_59_00.jpg 5.01MB
2023_05_29_13_51_20.jpg 5.01MB
2023_05_29_14_24_07.jpg 3.18MB
2023_05_29_14_20_36.jpg 3.18MB
weiting3.jpg 1.23MB
test1.jpg 910KB
test2.jpg 846KB
test3.jpg 788KB
test4.jpg 360KB
train_batch0.jpg 359KB
train_batch1.jpg 338KB
train_batch2.jpg 317KB
test_batch0_gt.jpg 266KB
test_batch0_pred.jpg 266KB
000000000257.jpg 204KB
background.jpg 181KB
000000513966.jpg 162KB
out.jpg 133KB
2023_05_29_13_51_47.jpg 103KB
2024_02_29_15_12_40.jpg 93KB
2024_02_29_15_14_55.jpg 89KB
weiting.jpg 40KB
fold.json 93B
setting.json 84B
ip.json 47B
README.md 11KB
README.md 2KB
2023_05_30_21_51_14.mp4 82.73MB
背景.png 2.39MB
background.png 1.19MB
labels_correlogram.png 1.03MB
labels.png 567KB
ͼƬ1.png 276KB
ͼƬ1.png 276KB
conan0_.png 276KB
results.png 266KB
precision-recall_curve.png 74KB
conan.png 11KB
conan0.png 11KB
ģ.png 9KB
运行.png 9KB
赞停.png 6KB
赞停.png 6KB
开始.png 5KB
打开.png 5KB
摄像头开.png 4KB
模型中心.png 4KB
表情.png 4KB
数据探索.png 4KB
数据探索.png 4KB
ֹͣ.png 3KB
ֹͣ.png 3KB
摄像头关.png 3KB
摄像头关.png 3KB
doctor.png 3KB
evil.png 3KB
摄像头开.png 3KB
实时视频流解析.png 2KB
button-on.png 2KB
暂停.png 2KB
打开.png 2KB
终止.png 1KB
button-off.png 1KB
Բ.png 1KB
笑脸.png 786B
正方形.png 718B
箭头_列表展开.png 668B
箭头_列表收起.png 645B
关闭.png 605B
还原.png 601B
下拉_白色.png 573B
最大化.png 406B
最小化.png 249B
best.pt 14.09MB
best.pt 14.09MB
last.pt 14.09MB
apprcc_rc.py 11.22MB
win.py 47KB
datasets.py 45KB
general.py 36KB
train.py 33KB
common.py 32KB
wandb_utils.py 27KB
main.py 26KB
tf.py 20KB
plots.py 20KB
wandb_utils.py 19KB
val.py 17KB
yolo.py 15KB
metrics.py 14KB
torch_utils.py 14KB
detect.py 12KB
augmentations.py 11KB
共 216 条
- 1
- 2
- 3
资源评论
onnx
- 粉丝: 9350
- 资源: 5586
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功