#以下代码改自https://github.com/rockchip-linux/rknn-toolkit2/tree/master/examples/onnx/yolov5
import cv2
import numpy as np
OBJ_THRESH, NMS_THRESH, IMG_SIZE = 0.25, 0.45, 640
CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
"fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
"bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
"pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
"oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
#
# def sigmoid(x):
# return 1 / (1 + np.exp(-x))
def xywh2xyxy(x):
# Convert [x, y, w, h] to [x1, y1, x2, y2]
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def process(input, mask, anchors):
anchors = [anchors[i] for i in mask]
grid_h, grid_w = map(int, input.shape[0:2])
box_confidence = input[..., 4]
box_confidence = np.expand_dims(box_confidence, axis=-1)
box_class_probs = input[..., 5:]
box_xy = input[..., :2] *2 - 0.5
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
grid = np.concatenate((col, row), axis=-1)
box_xy += grid
box_xy *= int(IMG_SIZE/grid_h)
box_wh = pow(input[..., 2:4] *2, 2)
box_wh = box_wh * anchors
return np.concatenate((box_xy, box_wh), axis=-1), box_confidence, box_class_probs
def filter_boxes(boxes, box_confidences, box_class_probs):
"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
# Arguments
boxes: ndarray, boxes of objects.
box_confidences: ndarray, confidences of objects.
box_class_probs: ndarray, class_probs of objects.
# Returns
boxes: ndarray, filtered boxes.
classes: ndarray, classes for boxes.
scores: ndarray, scores for boxes.
"""
boxes = boxes.reshape(-1, 4)
box_confidences = box_confidences.reshape(-1)
box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
_box_pos = np.where(box_confidences >= OBJ_THRESH)
boxes = boxes[_box_pos]
box_confidences = box_confidences[_box_pos]
box_class_probs = box_class_probs[_box_pos]
class_max_score = np.max(box_class_probs, axis=-1)
classes = np.argmax(box_class_probs, axis=-1)
_class_pos = np.where(class_max_score >= OBJ_THRESH)
return boxes[_class_pos], classes[_class_pos], (class_max_score * box_confidences)[_class_pos]
def nms_boxes(boxes, scores):
"""Suppress non-maximal boxes.
# Arguments
boxes: ndarray, boxes of objects.
scores: ndarray, scores of objects.
# Returns
keep: ndarray, index of effective boxes.
"""
x = boxes[:, 0]
y = boxes[:, 1]
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
areas = w * h
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x[i], x[order[1:]])
yy1 = np.maximum(y[i], y[order[1:]])
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
inter = w1 * h1
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= NMS_THRESH)[0]
order = order[inds + 1]
return np.array(keep)
def yolov5_post_process(input_data):
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
boxes, classes, scores = [], [], []
for input, mask in zip(input_data, masks):
b, c, s = process(input, mask, anchors)
b, c, s = filter_boxes(b, c, s)
boxes.append(b)
classes.append(c)
scores.append(s)
boxes = np.concatenate(boxes)
boxes = xywh2xyxy(boxes)
classes = np.concatenate(classes)
scores = np.concatenate(scores)
nboxes, nclasses, nscores = [], [], []
for c in set(classes):
inds = np.where(classes == c)
b = boxes[inds]
c = classes[inds]
s = scores[inds]
keep = nms_boxes(b, s)
nboxes.append(b[keep])
nclasses.append(c[keep])
nscores.append(s[keep])
if not nclasses and not nscores:
return None, None, None
return np.concatenate(nboxes), np.concatenate(nclasses), np.concatenate(nscores)
def draw(image, boxes, scores, classes):
for box, score, cl in zip(boxes, scores, classes):
top, left, right, bottom = box
# print('class: {}, score: {}'.format(CLASSES[cl], score))
# print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
top = int(top)
left = int(left)
cv2.rectangle(image, (top, left), (int(right), int(bottom)), (255, 0, 0), 2)
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
(top, left - 6),
cv2.FONT_HERSHEY_SIMPLEX,
0.6, (0, 0, 255), 2)
def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - \
new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right,
cv2.BORDER_CONSTANT, value=color) # add border
return im
# return im, ratio, (dw, dh)
def myFunc(rknn_lite, IMG):
IMG = cv2.cvtColor(IMG, cv2.COLOR_BGR2RGB)
# 等比例缩放
# IMG = letterbox(IMG)
# 强制放缩
IMG = cv2.resize(IMG, (IMG_SIZE, IMG_SIZE))
outputs = rknn_lite.inference(inputs=[IMG])
input0_data = outputs[0].reshape([3, -1]+list(outputs[0].shape[-2:]))
input1_data = outputs[1].reshape([3, -1]+list(outputs[1].shape[-2:]))
input2_data = outputs[2].reshape([3, -1]+list(outputs[2].shape[-2:]))
input_data = list()
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
boxes, classes, scores = yolov5_post_process(input_data)
IMG = cv2.cvtColor(IMG, cv2.COLOR_RGB2BGR)
if boxes is not None:
draw(IMG, boxes, scores, classes)
return IMG
没有合适的资源?快使用搜索试试~ 我知道了~
使用python多线程异步提高模型部署到rk3588NPU使用率-python源码+项目使用说明.zip
共9个文件
py:3个
sh:2个
gitignore:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 3 下载量 38 浏览量
2023-05-10
19:27:57
上传
评论 11
收藏 6.35MB ZIP 举报
温馨提示
使用python多线程异步提高模型部署到rk3588NPU使用率_python源码+项目使用说明.zip 【项目资源说明】 使用多线程异步操作rknn模型, 提高rk3588/rk3588s的NPU使用率, 进而提高推理帧数(rk3568之类修改后应该也能使用, 但是作者本人并没有rk3568开发板......) 此分支使用模型yolov5s_relu_tk2_RK3588_i8.rknn, 将yolov5s模型的激活函数silu修改为为relu,在损失一点精度的情况下获得较大性能提升,详情见于rknn_model_zoo 部署应用 修改main.py下的modelPath为你自己的模型所在路径 修改main.py下的cap为你想要运行的视频/摄像头 修改main.py下的TPEs为你想要的线程数, 具体可参考下表 修改func.py为你自己需要的推理函数, 具体可查看myFunc函数 多线程模型帧率测试 使用performance.sh进行CPU/NPU定频尽量减少误差 测试模型为yolov5s_relu_tk2_RK3588_i8.rknn 【备注】更多详细介绍请看说明和代码!
资源推荐
资源详情
资源评论
收起资源包目录
使用python多线程异步提高模型部署到rk3588NPU使用率_python源码+项目使用说明.zip (9个子文件)
func.py 8KB
项目说明.md 2KB
main.py 1KB
LICENSE 11KB
rknnpool.py 2KB
rknnModel
yolov5s_relu_tk2_RK3588_i8.rknn 8.07MB
performance.sh 1KB
rkcat.sh 103B
.gitignore 3KB
共 9 条
- 1
onnx
- 粉丝: 1w+
- 资源: 5626
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 06-【培训手册】05-新员工入职培训手册.docx
- 07-【培训考试】01-新入职员工培训考试试题.docx
- 07-【培训考试】03-新员工培训考试试题.docx
- 08-【考核管理】04-新员工培训考核方案.docx
- 08-【考核管理】01-新员工培训和考核管理制度.doc.docx
- 08-【考核管理】07-新员工培训考核表.doc.docx
- 08-【考核管理】10-新员工培训评估表.doc.docx
- 11-【其他】04-新员工岗前培训试题.docx
- 09-【确认书】01-新员工入职培训确认书.docx
- 11-【其他】01-新员工入职培训引导表.docx
- 11-【其他】08-新员工入职培训考试试卷.docx
- 11-【其他】07-新员工入职培训跟踪表.docx
- 中职学校《计算机应用基础》课程标准及教学指导(2024年版)
- 【培训实施】-02-培训计划实施方案.docx
- 【培训实施】-01-公司年度培训实施方案.docx.doc
- 【培训管理】员工培训实施制度.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
- 3
前往页