%%
clear;
close all;
clc;
mainfc;
%% 自动弹出提示框读取图像
[filename filepath] = uigetfile('.jpg', '输入一个需要识别的图像');
file = strcat(filepath, filename);
img = imread(file);
figure;
imshow(img);
title('车牌图像');
%% 灰度处理
img1 = rgb2gray(img); % RGB图像转灰度图像
figure;
subplot(1, 2, 1);
imshow(img1);
title('灰度图像');
subplot(1, 2, 2);
imhist(img1);
title('灰度处理后的灰度直方图');
%% 边缘提取
img4 = edge(img1, 'roberts', 0.15, 'both');
figure('name','边缘检测');
imshow(img4);
title('roberts算子边缘检测');
%% 图像腐蚀
se=[1;1;1];
img5 = imerode(img4, se);
figure('name','图像腐蚀');
imshow(img5);
title('图像腐蚀后的图像');
%% 平滑图像,图像膨胀
se = strel('rectangle', [30, 30]);
img6 = imclose(img5, se);
figure('name','平滑处理');
imshow(img6);
title('平滑图像的轮廓');
%% 从图像中删除所有少于2200像素8邻接
img7 = bwareaopen(img6, 2200);
figure('name', '移除小对象');
imshow(img7);
title('从图像中移除小对象');
%% 切割出图像
[y, x, z] = size(img7);
img8 = double(img7); % 转成双精度浮点型
% 车牌的蓝色区域
% Y方向
blue_Y = zeros(y, 1);
for i = 1:y
for j = 1:x
if(img8(i, j) == 1) % 判断车牌位置区域
blue_Y(i, 1) = blue_Y(i, 1) + 1; % 像素点统计
end
end
end
% 找到Y坐标的最小值
img_Y1 = 1;
while (blue_Y(img_Y1) < 5) && (img_Y1 < y)
img_Y1 = img_Y1 + 1;
end
% 找到Y坐标的最大值
img_Y2 = y;
while (blue_Y(img_Y2) < 5) && (img_Y2 > img_Y1)
img_Y2 = img_Y2 - 1;
end
% x方向
blue_X = zeros(1, x);
for j = 1:x
for i = 1:y
if(img8(i, j) == 1) % 判断车牌位置区域
blue_X(1, j) = blue_X(1, j) + 1;
end
end
end
% 找到x坐标的最小值
img_X1 = 1;
while (blue_X(1, img_X1) < 5) && (img_X1 < x)
img_X1 = img_X1 + 1;
end
% 找到x坐标的最小值
img_X2 = x;
while (blue_X(1, img_X2) < 5) && (img_X2 > img_X1)
img_X2 = img_X2 - 1;
end
% 对图像进行裁剪
img9 = img(img_Y1:img_Y2, img_X1:img_X2, :);
figure('name', '定位剪切图像');
imshow(img9);
title('定位剪切后的彩色车牌图像')
% 保存提取出来的车牌图像
imwrite(img9, '车牌图像.jpg');
%% 对车牌图像作图像预处理
plate_img = imread('车牌图像.jpg');
% 转换成灰度图像
plate_img1 = rgb2gray(plate_img); % RGB图像转灰度图像
figure;
subplot(1, 2, 1);
imshow(plate_img1);
title('灰度图像');
subplot(1, 2, 2);
imhist(plate_img1);
title('灰度处理后的灰度直方图');
% 直方图均衡化
plate_img2 = histeq(plate_img1);
figure('name', '直方图均衡化');
subplot(1,2,1);
imshow(plate_img2);
title('直方图均衡化的图像');
subplot(1,2,2);
imhist(plate_img2);
title('直方图');
% 二值化处理
plate_img3 = im2bw(plate_img2, 0.76);
figure('name', '二值化处理');
imshow(plate_img3);
title('车牌二值图像');
% 中值滤波
plate_img4 = medfilt2(plate_img3);
figure('name', '中值滤波');
imshow(plate_img4);
title('中值滤波后的图像');
%% 进行字符识别
plate_img5 = dingwei(plate_img4);
[m, n] = size(plate_img5);
s = sum(plate_img5); %sum(x)就是竖向相加,求每列的和,结果是行向量;
j = 1;
k1 = 1;
k2 = 1;
while j ~= n
while s(j) == 0
j = j + 1;
end
k1 = j;
while s(j) ~= 0 && j <= n-1
j = j + 1;
end
k2 = j + 1;
if k2 - k1 > round(n / 6.5)
[val, num] = min(sum(plate_img5(:, [k1+5:k2-5])));
plate_img5(:, k1+num+5) = 0;
end
end
y1 = 10;
y2 = 0.25;
flag = 0;
word1 = [];
while flag == 0
[m, n] = size(plate_img5);
left = 1;
width = 0;
while sum(plate_img5(:, width+1)) ~= 0
width = width + 1;
end
if width < y1
plate_img5(:, [1:width]) = 0;
plate_img5 = dingwei(plate_img5);
else
temp = dingwei(imcrop(plate_img5, [1,1,width,m]));
[m, n] = size(temp);
all = sum(sum(temp));
two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));
if two_thirds/all > y2
flag = 1;
word1 = temp;
end
plate_img5(:, [1:width]) = 0;
plate_img5 = dingwei(plate_img5);
end
end
figure;
subplot(2,4,1), imshow(plate_img5);
% 分割出第二个字符
[word2,plate_img5]=getword(plate_img5);
subplot(2,4,2), imshow(plate_img5);
% 分割出第三个字符
[word3,plate_img5]=getword(plate_img5);
subplot(2,4,3), imshow(plate_img5);
% 分割出第四个字符
[word4,plate_img5]=getword(plate_img5);
subplot(2,4,4), imshow(plate_img5);
% 分割出第五个字符
[word5,plate_img5]=getword(plate_img5);
subplot(2,3,4), imshow(plate_img5);
% 分割出第六个字符
[word6,plate_img5]=getword(plate_img5);
subplot(2,3,5), imshow(plate_img5);
% 分割出第七个字符
[word7,plate_img5]=getword(plate_img5);
subplot(2,3,6), imshow(plate_img5);
figure;
subplot(5,7,1),imshow(word1),title('1');
subplot(5,7,2),imshow(word2),title('2');
subplot(5,7,3),imshow(word3),title('3');
subplot(5,7,4),imshow(word4),title('4');
subplot(5,7,5),imshow(word5),title('5');
subplot(5,7,6),imshow(word6),title('6');
subplot(5,7,7),imshow(word7),title('7');
word1=imresize(word1,[40 20]);%imresize对图像做缩放处理,常用调用格式为:B=imresize(A,ntimes,method);其中method可选nearest,bilinear(双线性),bicubic,box,lanczors2,lanczors3等
word2=imresize(word2,[40 20]);
word3=imresize(word3,[40 20]);
word4=imresize(word4,[40 20]);
word5=imresize(word5,[40 20]);
word6=imresize(word6,[40 20]);
word7=imresize(word7,[40 20]);
subplot(5,7,15),imshow(word1),title('11');
subplot(5,7,16),imshow(word2),title('22');
subplot(5,7,17),imshow(word3),title('33');
subplot(5,7,18),imshow(word4),title('44');
subplot(5,7,19),imshow(word5),title('55');
subplot(5,7,20),imshow(word6),title('66');
subplot(5,7,21),imshow(word7),title('77');
imwrite(word1,'1.jpg'); % 创建七位车牌字符图像
imwrite(word2,'2.jpg');
imwrite(word3,'3.jpg');
imwrite(word4,'4.jpg');
imwrite(word5,'5.jpg');
imwrite(word6,'6.jpg');
imwrite(word7,'7.jpg');
%% 进行字符识别
liccode=char(['0':'9' 'A':'Z' '京辽鲁陕苏豫浙贵']);%建立自动识别字符代码表;'京津沪渝港澳吉辽鲁豫冀鄂湘晋青皖苏赣浙闽粤琼台陕甘云川贵黑藏蒙桂新宁'
% 编号:0-9分别为 1-10;A-Z分别为 11-36;
% 京 津 沪 渝 港 澳 吉 辽 鲁 豫 冀 鄂 湘 晋 青 皖 苏
% 赣 浙 闽 粤 琼 台 陕 甘 云 川 贵 黑 藏 蒙 桂 新 宁
% 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
% 60 61 62 63 64 65 66 67 68 69 70
subBw2 = zeros(40, 20);
num = 1; % 车牌位数
for i = 1:7
ii = int2str(i); % 将整型数据转换为字符串型数据
word = imread([ii,'.jpg']); % 读取之前分割出的字符的图片
segBw2 = imresize(word, [40,20], 'nearest'); % 调整图片的大小
segBw2 = im2bw(segBw2, 0.5); % 图像二值化
if i == 1 % 字符第一位为汉字,定位汉字所在字段
kMin = 37;
kMax = 44;
elseif i == 2 % 第二位为英文字母,定位字母所在字段
kMin = 11;
kMax = 36;
elseif i >= 3 % 第三位开始就是数字了,定位数字所在字段
kMin = 1;
kMax = 36;
end
l = 1;
for k = kMin : kMax
fname = strcat('字符模板\',liccode(k),'.jpg'); % 根据字符库找到图片模板
samBw2 = imread(fname); % 读取模板库中的图片
samBw2 = im2bw(samBw2, 0.5); % 图像二值化
% 将待识别图片与模板图片做差
for i1 = 1:40
for j1 = 1:20
subBw2(i1, j1) = segBw2(i1, j1) - samBw2(i1 ,j1);
end
end
% 统计两幅图片不同点的个数,并保存下来
Dmax = 0;
for i2 = 1:40
for j2 = 1:20
if subBw2(i2, j2) ~= 0
Dmax = Dmax + 1;
end
end
end
error(l) = Dmax;
l = l + 1;
end
% 找到图片差别最少的图像
errorMin = min(error);
findc = find(error == errorMin);
% error
% findc
% 根据字库,对应到识别的字符
Code(num*2 - 1) = liccode(findc(1) + kMin - 1);
Code(nu
没有合适的资源?快使用搜索试试~ 我知道了~
基于MATLAB车牌识别系统【带界面GUI】.zip
共59个文件
jpg:55个
m:3个
p:1个
需积分: 0 1 下载量 103 浏览量
2024-11-13
13:13:18
上传
评论
收藏 239KB ZIP 举报
温馨提示
基于MATLAB车牌识别系统【带界面GUI】.zip
资源推荐
资源详情
资源评论
收起资源包目录
基于MATLAB车牌识别系统【带界面GUI】.zip (59个子文件)
基于MATLAB车牌识别系统【带界面GUI】
2.jpg 828B
车牌图片
car2.jpg 60KB
car1.jpg 31KB
dingwei.m 642B
6.jpg 798B
1.jpg 898B
main.m 8KB
B.jpg 884B
5.jpg 672B
mainfc.p 202B
getword.m 2KB
3.jpg 690B
7.jpg 698B
车牌图像.jpg 4KB
4.jpg 767B
字符模板
Y.jpg 668B
辽.jpg 14KB
C.jpg 771B
苏.jpg 824B
2.jpg 12KB
E.jpg 12KB
Z.jpg 12KB
N.jpg 12KB
贵.jpg 898B
k.jpg 764B
6.jpg 797B
S.jpg 12KB
M.jpg 772B
R.jpg 12KB
1.jpg 482B
L.jpg 598B
J.jpg 566B
B.jpg 884B
F.jpg 11KB
京.jpg 890B
P.jpg 656B
5.jpg 12KB
0.jpg 660B
T.jpg 11KB
浙.jpg 787B
A.jpg 806B
G.jpg 12KB
8.jpg 789B
陕.jpg 867B
D.jpg 662B
X.jpg 797B
W.jpg 12KB
U.jpg 12KB
I.jpg 11KB
Q.jpg 828B
3.jpg 793B
鲁.jpg 858B
7.jpg 583B
O.jpg 12KB
H.jpg 439B
V.jpg 793B
9.jpg 778B
豫.jpg 918B
4.jpg 12KB
共 59 条
- 1
资源评论
远望清一色
- 粉丝: 335
- 资源: 46
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- CardExpiredException解决方案(亲测可用).md
- python《Hybrid-SORT-多目标跟踪器(弱线索对在线多目标跟踪)》+项目源码+文档说明
- aspose:word,pdf,ppt
- 个人信用报告690428.zip
- 植物大战僵尸射击版v.0.3 双端安装程序
- 【重磅,更新!】中国各省水资源分类统计数据(2003-2022年)
- 富士施乐打印机驱动下载 适用机型:FujiXerox DocuPrint M375 df、M378 d、M378 df
- python-图片批量保存脚本
- aspose:word,pdf,ppt
- 中国2005-2021年大气污染物和二氧化碳排放趋势数据集【重磅,更新!】
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功