# photometry-neural-data-analysis
Matlab scripts for batch import and analysis of photometry data from TDT-based systems.
Data processing is divided into four phases; behavior-specific files differ in behavioral data analysis specifics but share common strategy for processing photometry data and generating PSTHs.
Some statistical and behavioral analyses reported in Steinberg et al. Neuron 2020 are not included in this code as they were conducted in other programs.
***********************************************
1) Data extraction and preparation for analysis, QC check
What you can expect this script to do:
Control signal is fitted to calcium dependent signal and subtracted to correct for motion artifacts and bleaching
Fitted signal is z-score normalized to facilitate comparisons across subjects
Graphs are generated for each subject of raw, fitted and z-scored data for QC check
Key output data stored in "Photometry_zScore" structure array containing the following fields:
(1) Subject IDs, (2) Raw datafile names, (3) Sampling rate,
(4) Fitted/normalized photometry data, (5) Photometry timestamps, (6+) TTL timestamps for external events
What you need to customize:
Input/output data filenames
Specify TDT data sources(photometry data + TTL inputs to sync behavior/stimuli)
Assumptions:
2-color input: 470 nm (calcium dependent signal) and 405 nm (calcium independent control)
Requires additional standalone functions (provided, credit: Tom Davidson): tdt2mat, controlFit, deltaFF
***********************************************
2) Batch analysis of individual data
What you can expect this script to do:
Identify timestamps for key behavioral events that are separated in time to avoid re-sampling the same data twice
Generate PSTH graphs for these events for each subject - batch processing for exploratory visualization of
individual variability
Key output data stored in structure arrays:
Photometry_PSTH
Behavior_ts
Behavior PSTH (some programs)
What you need to customize:
Input/output data filenames
Specify relationship between TTL inputs and behavioral events
Specify time window for analysis
Assumptions:
Raw data have been previously extracted and normalized as in step (1)
Requires two additional functions (provided):
processPhotDataRow_normDat (to align photometry data across trials to generate PSTH, credit: Tom Davidson)
opacity (to generate fills for shaded error bars for graphs)
***********************************************
3) Generate group average PSTH graphs
What you can expect this script to do:
Generate group average graphs of behavioral data and photometry responses as PSTH
What you need to customize:
Input/output data filenames
Specify time windows for analysis
Assumptions:
Raw data have been previously analyzed through steps 1 and 2
Requires one additional function (provided):
opacity (to generate fills for shaded error bars for graphs)
***********************************************
4) Statistical analysis of group graphs
What you can expect this script to do:
Compare pre/post event behavior or neural activity using paired t-tests
Print summary results in excel spreadsheet
Key output data is stored in a structure array "Statistics" with 9 fields:
Name - Description of comparison
Comparitor1 - name of data1
Comparitor2 - name of data2
Hypothesis - 1 if null hypothesis can be rejected at the 5% level, 0 if not
pValue - obvious
Mean1 - group mean for the first comparitor
Mean2 - group mean for the second comparitor
Values1 - comparitor 1 individual data used to generate group average
Values2 - comparitor 2 individual data used to generate group average
What you need to customize:
Input/output data filenames
Specify analysis window
Assumptions:
Raw data have been previously analyzed through steps 1 and 2
Feel free to contact me with questions - I'm happy to clarify anything in the code. [elizabeth.steinberg at gmail]
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随
资源推荐
资源详情
资源评论
收起资源包目录
毕业设计&课设-用于导入和分析TDT系统上收集的光度数据的Matlab脚本.zip (15个子文件)
matlab_code
2 - Batch PSTH analyses - for exploratory visualization
Lickometer_batch_analysis.m 20KB
opacity.m 227B
VI60_lever_batch_analysis.m 16KB
processPhotDataRow_normDat.m 726B
4 - Statistics - output summary in Matlab and Excel
VI60_lever_group_statistics.m 7KB
Lickometer_group_statistics.m 13KB
README.md 4KB
3 - Group PSTH analyses - averaged data
Lickometer_group_analysis_final_graphs.m 16KB
VI60_group_analysis_final_graphs.m 8KB
opacity.m 227B
1 - Data extraction QC and preparation for analysis
TDT_photometry_data_extraction_VI60_lever.m 7KB
TDT_photometry_data_extraction_Lickometer.m 7KB
tdt2mat.m 4KB
deltaFF.m 150B
controlFit.m 132B
共 15 条
- 1
资源评论
白话机器学习
- 粉丝: 1w+
- 资源: 7671
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- CocosCreator开发视频教程含源码简易塔防开发3.61G
- 对数据集进行二分类,有数据集和源码以及模型,二分类是识别猫和不是猫的情况,可做毕业设计
- CocosCreator开发视频教程含源码多段线拖动轨迹物体2G
- Delphi 学习教程(从入门到实践)
- 基于Node.js+Vue.js Fetch API 爬虫的不要害羞纯静态图片网站源码.zip
- Cocos2d-x教程视频使用Eclipse在Ubuntu下搭建Cocos2d-x 3集成开发环境
- java实现飞机大战的游戏
- 安捷伦的噪声系数基础应用笔记
- MISRA-C工业标准的C编程规范(中文版).pdf
- Cocos2d-x教程视频粒子系统初级应用
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功