# Kilosort2: automated spike sorting with drift tracking and template matching on GPUs #
![](https://github.com/MouseLand/Kilosort2/blob/master/Docs/img/templates.png)
Welcome to Kilosort2, a MATLAB package for spike sorting electrophysiological data up to 1024 channels. In many cases, and especially for Neuropixels probes, the automated output of Kilosort2 requires minimal manual curation.
There is currently no preprint or paper for Kilosort2, so please read the wiki to find out [how it works](https://github.com/MouseLand/Kilosort2/wiki), and especially the [drift correction](https://github.com/MouseLand/Kilosort2/wiki/3.-More-on-drift-correction) section. Kilosort2 improves on Kilosort primarily by employing drift correction, which changes the templates continuously as a function of drift. Drift correction does not depend on a particular probe geometry, but denser spacing of sites generally helps to better track neurons, especially if the probe movement is large. Kilosort2 has been primarily developed on awake, head-fixed recordings from Neuropixels 1.0 data, but has also been tested in a few other configurations. To get a sense of how probe drift affects spike sorting, check out our "eMouse" simulation [here](https://github.com/MouseLand/Kilosort2/tree/master/eMouse_drift) and [its wiki page](https://github.com/MouseLand/Kilosort2/wiki/4.-eMouse-simulator-with-drift).
To aid in setting up a Kilosort2 run on your own probe configuration, we have developed a [graphical user interface](https://github.com/MouseLand/Kilosort2/wiki/1.-The-GUI) where filepaths can be set and data loaded and visually inspected, to make sure Kilosort2 sees it correctly. The picture above is another GUI visualization: it shows the templates detected by Kilosort2 over a 60ms interval from a Neuropixels recording. The final output of Kilosort2 can be visualized and curated in the [Phy GUI](https://github.com/kwikteam/phy), which must be installed separately (we recommend the development version). Since Phy is in Python, you will also need the [npy-matlab ](https://github.com/kwikteam/npy-matlab) package.
### Installation ###
Required toolboxes: parallel computing toolbox, signal processing toolbox, Statistics and Machine Learning Toolbox, MATLAB >=R2016b
You must run and complete successfully `mexGPUall.m` in the `CUDA` folder. This requires mexcuda support, which comes with the parallel computing toolbox. To set up mexcuda compilation, install the exact version of the CUDA toolkit compatible with your MATLAB version (see [here](https://www.mathworks.com/help/distcomp/gpu-support-by-release.html)). On Windows, you must also install a CPU compiler, for example the freely available [Visual Studio Community 2013](https://www.visualstudio.com/vs/older-downloads/). Note that the most recent editions of Visual Studio are usually not compatible with CUDA. If you had previously used a different CPU compiler in MATLAB, you must switch to the CUDA-compatible compiler using `mex -setup C++`. For more about mexcuda installation, see these [instructions](http://uk.mathworks.com/help/distcomp/mexcuda.html).
### General instructions for running Kilosort2 ###
#### Option 1: Using the GUI
Navigate to the `Kilosort2` directory and run `kilosort`:
```
>> cd \my\kilosort2\directory\
>> kilosort
```
See the [GUI documentation](https://github.com/MouseLand/Kilosort2/wiki/1.-The-GUI) for more details.
#### Option 2: Using scripts (classic method)
1. Make a copy of `master_kilosort.m` and `\configFiles\StandardConfig_MOVEME.m` and put them in a different directory. These files will contain your own settings, and you don't want them to be overwritten when you update Kilosort2.
2. Generate a channel map file for your probe using `\configFiles\createChannelMap.m` as a starting point.
3. Edit the config file with desired parameters. You should at least set the file paths `ops.fbinary`, `ops.root` and `ops.fproc` (this file will not exist yet - `kilosort` will create it), the sampling frequency `ops.fs`, the number of channels in the file `ops.NchanTOT` and the location of your channel map file `ops.chanMap`.
4. Edit `master_kilosort.m` so that the paths at the top ([lines 3–4](https://github.com/MouseLand/Kilosort2/blob/master/master_kilosort.m#L3-L4)) point to your local copies of those GitHub repositories, and so that the configuration file is correctly specified ([lines 6–7](https://github.com/MouseLand/Kilosort2/blob/2fba667359dbddbb0e52e67fa848f197e44cf5ef/master_kilosort.m#L6-L7)).
### Parameters ###
If you are unhappy with the quality of the automated sorting, try changing one of the main parameters:
`ops.Th = [10 4]` (default). Thresholds on spike detection used during the optimization `Th(1)` or during the final pass `Th(2)`. These thresholds are applied to the template projections, not to the voltage. Typically, `Th(1)` is high enough that the algorithm only picks up sortable units, while `Th(2)` is low enough that it can pick all of the spikes of these units. It doesn't matter if the final pass also collects noise: an additional per neuron threshold is set afterwards, and a splitting step ensures clusters with multiple units get split.
`ops.AUCsplit = 0.9` (default). Threshold on the area under the curve (AUC) criterion for performing a split in the final step. If the AUC of the split is higher than this, that split is considered good. However, a good split only goes through if, additionally, the cross-correlogram of the split units does not contain a big dip at time 0.
`ops.lam = 10` (default). The individual spike amplitudes are biased towards the mean of the cluster by this factor; 50 is a lot, 0 is no bias.
A list of all the adjustable parameters is in the example configuration file.
### Integration with Phy GUI ###
Kilosort2 provides a results file called `rez`, where the first column of `rez.st`are the spike times and the second column are the cluster identities. It also provides a field `rez.good` which is 1 if the algorithm classified that cluster as a good single unit. To visualize the results of Kilosort2, you can use [Phy](https://github.com/kwikteam/phy), which also provides a manual clustering interface for refining the results of the algorithm. Kilosort2 automatically sets the "good" units in Phy based on a <20% estimated contamination rate with spikes from other neurons (computed from the refractory period violations relative to expected).
Because Phy is written in Python, you also need to install [npy-matlab](https://github.com/kwikteam/npy-matlab), to provide read/write functions from MATLAB to Python.
Detailed instructions for interpreting results are provided [here](https://github.com/kwikteam/phy-contrib/blob/master/docs/template-gui.md). That documentation was developed for Kilosort1, so things will look a little different with Kilosort2.
### Credits ###
Kilosort2 by Marius Pachitariu
GUI by Nick Steinmetz
eMouse simulation by Jennifer Colonell
### Questions ###
Please create an issue for bugs / installation problems.
### Licence ###
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
matlab科研助手
- 粉丝: 3w+
- 资源: 5991
最新资源
- springboot校车调度管理系统_r4le2--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- python基于机器学习心脏病预测源码+csv格式数据集(高分期末大作业)
- springboot宿舍管理系统_o4dvi--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 数据中台与业务中台设计方案.pptx
- springboot图书管理系统_g9e3a--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 元宇宙社区展厅规划设计.docx
- 城市照明管理数字化解决方案.docx
- 弱电智能化设计方案.docx
- springboot企业车辆管理系统设计与实现--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- springboot汽车租赁管理系统_1ma2x--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- springboot房屋交易系统_88j45-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- springboot大学生班级管理系统_9809i--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- springboot流浪猫狗救助救援网站_4a4i2--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 基于Java Web的智能二维码门禁管理系统本科毕业设计论文+源码(高分毕设)
- springboot基于协同过滤算法的私人诊所管理系统_6t4o8--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- springboot健美操评分系统_o4o1y--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈