# Multi-Object Tracking with Ultralytics YOLO
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png" alt="YOLOv8 trackers visualization">
Object tracking in the realm of video analytics is a critical task that not only identifies the location and class of objects within the frame but also maintains a unique ID for each detected object as the video progresses. The applications are limitless—ranging from surveillance and security to real-time sports analytics.
## Why Choose Ultralytics YOLO for Object Tracking?
The output from Ultralytics trackers is consistent with standard object detection but has the added value of object IDs. This makes it easy to track objects in video streams and perform subsequent analytics. Here's why you should consider using Ultralytics YOLO for your object tracking needs:
- **Efficiency:** Process video streams in real-time without compromising accuracy.
- **Flexibility:** Supports multiple tracking algorithms and configurations.
- **Ease of Use:** Simple Python API and CLI options for quick integration and deployment.
- **Customizability:** Easy to use with custom trained YOLO models, allowing integration into domain-specific applications.
**Video Tutorial:** [Object Detection and Tracking with Ultralytics YOLOv8](https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-).
## Features at a Glance
Ultralytics YOLO extends its object detection features to provide robust and versatile object tracking:
- **Real-Time Tracking:** Seamlessly track objects in high-frame-rate videos.
- **Multiple Tracker Support:** Choose from a variety of established tracking algorithms.
- **Customizable Tracker Configurations:** Tailor the tracking algorithm to meet specific requirements by adjusting various parameters.
## Available Trackers
Ultralytics YOLO supports the following tracking algorithms. They can be enabled by passing the relevant YAML configuration file such as `tracker=tracker_type.yaml`:
- [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - Use `botsort.yaml` to enable this tracker.
- [ByteTrack](https://github.com/ifzhang/ByteTrack) - Use `bytetrack.yaml` to enable this tracker.
The default tracker is BoT-SORT.
## Tracking
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
#### Python
```python
from ultralytics import YOLO
# Load an official or custom model
model = YOLO("yolov8n.pt") # Load an official Detect model
model = YOLO("yolov8n-seg.pt") # Load an official Segment model
model = YOLO("yolov8n-pose.pt") # Load an official Pose model
model = YOLO("path/to/best.pt") # Load a custom trained model
# Perform tracking with the model
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True
) # Tracking with default tracker
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml"
) # Tracking with ByteTrack tracker
```
#### CLI
```bash
# Perform tracking with various models using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" # Official Detect model
yolo track model=yolov8n-seg.pt source="https://youtu.be/LNwODJXcvt4" # Official Segment model
yolo track model=yolov8n-pose.pt source="https://youtu.be/LNwODJXcvt4" # Official Pose model
yolo track model=path/to/best.pt source="https://youtu.be/LNwODJXcvt4" # Custom trained model
# Track using ByteTrack tracker
yolo track model=path/to/best.pt tracker="bytetrack.yaml"
```
As can be seen in the above usage, tracking is available for all Detect, Segment and Pose models run on videos or streaming sources.
## Configuration
### Tracking Arguments
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](https://docs.ultralytics.com/modes/predict/) model page.
#### Python
```python
from ultralytics import YOLO
# Configure the tracking parameters and run the tracker
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True
)
```
#### CLI
```bash
# Configure tracking parameters and run the tracker using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3, iou=0.5 show
```
### Tracker Selection
Ultralytics also allows you to use a modified tracker configuration file. To do this, simply make a copy of a tracker config file (for example, `custom_tracker.yaml`) from [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) and modify any configurations (except the `tracker_type`) as per your needs.
#### Python
```python
from ultralytics import YOLO
# Load the model and run the tracker with a custom configuration file
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", tracker="custom_tracker.yaml"
)
```
#### CLI
```bash
# Load the model and run the tracker with a custom configuration file using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" tracker='custom_tracker.yaml'
```
For a comprehensive list of tracking arguments, refer to the [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) page.
## Python Examples
### Persisting Tracks Loop
Here is a Python script using OpenCV (`cv2`) and YOLOv8 to run object tracking on video frames. This script still assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`). The `persist=True` argument tells the tracker than the current image or frame is the next in a sequence and to expect tracks from the previous image in the current image.
#### Python
```python
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
video_path = "path/to/video.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Tracking", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```
Please note the change from `model(frame)` to `model.track(frame)`, which enables object tracking instead of simple detection. This modified script will run the tracker on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
### Plotting Tracks Over Time
Visualizing object tracks over consecutive frames can provide valuable insights into the movement patterns and behavior of detected objects within a video. With Ultralytics YOLOv8, plotting these tracks is a seamless and efficient process.
In the following example, we demonstrate how to utilize YOLOv8's tracking capabilities to plot the movement of detected objects across multiple video frames. This script involves opening a video file, reading it frame by frame, and utilizing the YOLO model to identify and track various objects. By retaining the center points of the detected bounding boxes and connecting them, we can draw lines that represent the paths followed by the tracked objects.
#### Python
```python
from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("y
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv10汽车轮胎检测,包含训练好的汽车轮胎识别权重+数据集
共1701个文件
jpg:451个
txt:450个
md:301个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 80 浏览量
2024-08-16
22:08:10
上传
评论
收藏 148.39MB ZIP 举报
温馨提示
1、YOLOv10汽车轮胎检测,包含训练好的汽车轮胎识别权重,以及PR曲线,loss曲线等等,在汽车轮胎检测据集中训练得到的权重,类别名为tire,标签格式为txt和xml两种,分别保存在两个文件夹中 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,python代码
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv10汽车轮胎检测,包含训练好的汽车轮胎识别权重+数据集 (1701个子文件)
events.out.tfevents.1719203393.USER-20231125JB.7292.0 369KB
labels.cache 99KB
labels.cache 12KB
main.cc 10KB
CNAME 21B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 1KB
yolov10n.csv 235KB
yolov10m.csv 235KB
yolov10l.csv 235KB
yolov10s.csv 235KB
yolov10b.csv 235KB
yolov10x.csv 235KB
results.csv 47KB
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson 2KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
main.html 439B
favicon.ico 9KB
tutorial.ipynb 35KB
explorer.ipynb 22KB
object_tracking.ipynb 8KB
object_counting.ipynb 6KB
heatmaps.ipynb 6KB
hub.ipynb 4KB
tire_145.jpg 3.34MB
tire_395.jpg 2.37MB
tire_392.jpg 2.27MB
tire_183.jpg 2.16MB
tire_331.jpg 2.05MB
tire_179.jpg 1.98MB
tire_404.jpg 1.94MB
tire_234.jpg 1.92MB
tire_292.jpg 1.88MB
tire_226.jpg 1.88MB
tire_382.jpg 1.88MB
tire_376.jpg 1.84MB
tire_169.jpg 1.84MB
tire_318.jpg 1.83MB
tire_317.jpg 1.77MB
tire_279.jpg 1.64MB
tire_326.jpg 1.63MB
tire_273.jpg 1.6MB
tire_414.jpg 1.52MB
tire_361.jpg 1.43MB
tire_400.jpg 1.29MB
tire_112.jpg 1.2MB
tire_0.jpg 1.09MB
tire_28.jpg 1.03MB
tire_104.jpg 1.01MB
tire_154.jpg 976KB
tire_64.jpg 900KB
tire_134.jpg 859KB
tire_101.jpg 838KB
tire_86.jpg 805KB
tire_96.jpg 751KB
tire_57.jpg 732KB
tire_32.jpg 672KB
tire_93.jpg 606KB
tire_56.jpg 554KB
tire_189.jpg 527KB
tire_232.jpg 516KB
train_batch0.jpg 502KB
train_batch1.jpg 497KB
tire_92.jpg 490KB
train_batch2.jpg 477KB
val_batch0_pred.jpg 449KB
tire_95.jpg 442KB
val_batch0_labels.jpg 442KB
tire_67.jpg 430KB
train_batch1080.jpg 411KB
tire_72.jpg 406KB
tire_97.jpg 388KB
tire_125.jpg 387KB
train_batch1081.jpg 368KB
tire_4.jpg 363KB
train_batch1082.jpg 347KB
tire_110.jpg 329KB
tire_53.jpg 310KB
tire_221.jpg 310KB
tire_41.jpg 309KB
tire_197.jpg 292KB
tire_142.jpg 253KB
tire_90.jpg 246KB
tire_213.jpg 239KB
tire_27.jpg 234KB
tire_496.jpg 223KB
labels_correlogram.jpg 219KB
共 1701 条
- 1
- 2
- 3
- 4
- 5
- 6
- 18
资源评论
- qunimabidashabi2024-11-17资源质量不错,和资源描述一致,内容详细,对我很有用。
stsdddd
- 粉丝: 3w+
- 资源: 951
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 白色大气风格的旅游酒店企业网站模板.zip
- 白色大气风格的律师行政模板下载.zip
- 白色大气风格的旅游整站网站模板.zip
- 白色大气风格的美国留学成人教育网站模板.zip
- 白色大气风格的贸易物流企业网站模板.zip
- 白色大气风格的绿色服务型公司模板下载.zip
- 白色大气风格的美食DIY应用APP官网模板.zip
- 白色大气风格的美容养生spa企业网站模板.zip
- 白色大气风格的美食餐饮网站模板下载.zip
- 白色大气风格的模糊背景商务网站模板下载.zip
- 白色大气风格的美食厨师展示模板下载.zip
- 白色大气风格的木材加工行业网站模板下载.zip
- 白色大气风格的美食网站模板下载.zip
- 白色大气风格的摩托车爱好者网站模板下载.zip
- 白色大气风格的摩天大厦网站响应式模板.zip
- 白色大气风格的农业科技网站模板下载.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功