# YOLOv9
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2402.13616-B31B1B.svg)](https://arxiv.org/abs/2402.13616)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov9)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/merve/yolov9)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
[![OpenCV](https://img.shields.io/badge/OpenCV-BlogPost-black?logo=opencv&labelColor=blue&color=black)](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
<div align="center">
<a href="./">
<img src="./figure/performance.png" width="79%"/>
</a>
</div>
## Performance
MS COCO
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| [**YOLOv9-T**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt) | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
| [**YOLOv9-S**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-s-converted.pt) | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
| [**YOLOv9-M**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-m-converted.pt) | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | -->
<!-- tiny, small, and medium models will be released after the paper be accepted and published. -->
## Useful Links
<details><summary> <b>Expand</b> </summary>
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
TensorRT inference for segmentation: https://github.com/WongKinYiu/yolov9/issues/446
TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
YOLOv9 speed estimation: https://github.com/WongKinYiu/yolov9/issues/456
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
</details>
## Installation
Docker environment (recommended)
<details><summary> <b>Expand</b> </summary>
``` shell
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx
# pip install required packages
pip install seaborn thop
# go to code folder
cd /yolov9
```
</details>
## Evaluation
[`yolov9-s-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-s-converted.pt) [`yolov9-m-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-m-converted.pt) [`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt)
[`yolov9-s.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-s.pt) [`yolov9-m.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-m.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt)
[`gelan-s.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-s.pt) [`gelan-m.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-m.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
``` shell
# evaluate converted yolov9 models
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
# evaluate yolov9 models
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
# evaluate gelan models
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
```
You will get the results:
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
Average Precision (AP) @[ IoU=0.50:
没有合适的资源?快使用搜索试试~ 我知道了~
yolov9玩手机检测,训练好的权重,可以直接使用,并附有10000左右数据集
共2000个文件
txt:1990个
py:6个
md:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 54 浏览量
2024-07-27
09:02:37
上传
评论
收藏 312.12MB ZIP 举报
温馨提示
yolov9玩手机检测,训练好的权重,可以直接使用,并附有10000左右数据集,数据集目录已经配置好,yolo格式(txt)的标签,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8等算法可以直接进行训练模型, 数据集和检测结果参考: https://blog.csdn.net/zhiqingAI/article/details/124230743 https://blog.csdn.net/zhiqingAI/article/details/131352918 数据集配置目录结构data.yaml: nc: 1 play_phone
资源推荐
资源详情
资源评论
收起资源包目录
yolov9玩手机检测,训练好的权重,可以直接使用,并附有10000左右数据集 (2000个子文件)
LICENSE.md 34KB
README.md 16KB
yolo目标检测使用教程.pdf 318KB
train_dual.py 33KB
train.py 33KB
train_triple.py 33KB
val_dual.py 22KB
val.py 22KB
predict.py 13KB
phone_202306_5585.txt 488B
phone_202306_1382.txt 474B
phone_202306_5744.txt 441B
phone_202306_1321.txt 417B
phone_202306_6822.txt 409B
phone_202306_6843.txt 406B
phone_202306_1784.txt 406B
phone_202306_4013.txt 405B
phone_202306_1238.txt 404B
phone_202306_1597.txt 402B
phone_202306_3480.txt 401B
phone_202306_1898.txt 397B
phone_202306_1782.txt 397B
phone_202306_6844.txt 395B
phone_202306_1240.txt 392B
phone_202306_2492.txt 391B
phone_202306_5917.txt 390B
phone_202306_511.txt 390B
phone_202306_1802.txt 388B
phone_202306_1805.txt 381B
phone_202306_1795.txt 372B
phone_202306_6837.txt 328B
phone_202306_6835.txt 327B
phone_202306_6904.txt 326B
phone_202306_3449.txt 325B
phone_202306_8901.txt 325B
phone_202306_1783.txt 325B
phone_202306_8924.txt 325B
phone_202306_1316.txt 324B
phone_202306_3539.txt 324B
phone_202306_6224.txt 324B
phone_202306_8080.txt 324B
phone_202306_7688.txt 324B
phone_202306_1892.txt 323B
phone_202306_8477.txt 323B
phone_202306_2557.txt 323B
phone_202306_1972.txt 323B
phone_202306_6312.txt 323B
phone_202306_5252.txt 322B
phone_202306_2155.txt 320B
phone_202306_1471.txt 320B
phone_202306_1360.txt 319B
phone_202306_1362.txt 319B
phone_202306_6998.txt 318B
phone_202306_1352.txt 314B
phone_202306_7834.txt 314B
phone_202306_7005.txt 313B
phone_202306_8458.txt 313B
phone_202306_7341.txt 313B
phone_202306_1365.txt 312B
phone_202306_1497.txt 312B
phone_202306_4599.txt 312B
phone_202306_7845.txt 310B
phone_202306_9158.txt 310B
phone_202306_1366.txt 310B
phone_202306_1355.txt 309B
phone_202306_1356.txt 308B
phone_202306_7342.txt 301B
phone_202306_6903.txt 300B
phone_202306_3662.txt 299B
phone_202306_393.txt 298B
phone_202306_4563.txt 297B
phone_202306_1162.txt 291B
phone_202306_6828.txt 290B
phone_202306_8483.txt 284B
phone_202306_835.txt 278B
phone_202306_7893.txt 272B
phone_202306_5628.txt 266B
phone_202306_1425.txt 263B
phone_202306_3790.txt 261B
phone_202306_8391.txt 260B
phone_202306_2094.txt 255B
phone_202306_426.txt 254B
phone_202306_8114.txt 245B
phone_202306_8025.txt 243B
phone_202306_5812.txt 243B
phone_202306_5809.txt 242B
phone_202306_3444.txt 242B
phone_202306_5808.txt 242B
phone_202306_6985.txt 242B
phone_202306_1171.txt 242B
phone_202306_1831.txt 242B
phone_202306_1448.txt 242B
phone_202306_6984.txt 241B
phone_202306_3384.txt 241B
phone_202306_1571.txt 241B
phone_202306_4424.txt 240B
phone_202306_6222.txt 239B
phone_202306_6213.txt 239B
phone_202306_1723.txt 239B
phone_202306_2090.txt 239B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 946
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 新录音 7(1).m4a
- Lawrence C. Evans Partial Differential Equations.djvu
- CFA知识点梳理系列:CFA Level II, Reading 4 Big Data Projects
- 专业问题 · 语雀.mhtml
- 基于Vue+TP6的B2B2C多场景电商商城设计源码
- 基于小程序的研知识题库小程序源代码(java+小程序+mysql).zip
- 基于小程序的微信小程序的点餐系统源代码(java+小程序+mysql).zip
- 基于小程序的宿舍管理小程序源代码(java+小程序+mysql).zip
- 基于小程序的小区服务系统源代码(python+小程序+mysql).zip
- QT项目之中国象棋人工智能
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功