# YOLOv9
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2402.13616-B31B1B.svg)](https://arxiv.org/abs/2402.13616)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov9)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/merve/yolov9)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
[![OpenCV](https://img.shields.io/badge/OpenCV-BlogPost-black?logo=opencv&labelColor=blue&color=black)](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
<div align="center">
<a href="./">
<img src="./figure/performance.png" width="79%"/>
</a>
</div>
## Performance
MS COCO
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | -->
<!-- tiny, small, and medium models will be released after the paper be accepted and published. -->
## Useful Links
<details><summary> <b>Expand</b> </summary>
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
</details>
## Installation
Docker environment (recommended)
<details><summary> <b>Expand</b> </summary>
``` shell
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx
# pip install required packages
pip install seaborn thop
# go to code folder
cd /yolov9
```
</details>
## Evaluation
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
``` shell
# evaluate converted yolov9 models
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
# evaluate yolov9 models
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
# evaluate gelan models
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
```
You will get the results:
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
```
## Training
Data preparation
``` shell
bash scripts/get_coco.sh
```
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strong
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv9玉米叶病害检测权重,包含1500玉米叶病害检测数据集
共2000个文件
txt:1699个
jpg:189个
py:83个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 162 浏览量
2024-06-29
21:12:00
上传
评论 1
收藏 444.99MB ZIP 举报
温馨提示
YOLOv9玉米叶病害检测权重,包含1500玉米叶病害检测数据集 ;数据集目录已经配置好,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8,yolov9等算法可以直接进行训练模型,txt格式标签, 数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 数据集配置目录结构data.yaml: train: E:\python_code\dataset\Corn_yumiye_bad_dataset\train/images val: E:\python_code\dataset\Corn_yumiye_bad_dataset\valid/images test: E:\python_code\dataset\Corn_yumiye_bad_dataset\test/images nc: 4 names: - blight - common_rust - gray_leaf_spot - healthy
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv9玉米叶病害检测权重,包含1500玉米叶病害检测数据集 (2000个子文件)
labels.cache 430KB
reparameterization.ipynb 9KB
Corn_Blight-20-_jpg.rf.3a9fd4e653fdd381fd59d99bd6731972.jpg 134KB
Corn_Gray_Spot-247-_JPG.rf.ea59822c407b0b098a3d80394cf11834.jpg 120KB
Corn_Gray_Spot-29-_jpg.rf.60ac184355cbb69a7e549f9a8800a44b.jpg 116KB
Corn_Health-191-_jpg.rf.df728721cf7e8650ec084f912daedcf2.jpg 114KB
Corn_Health-145-_jpg.rf.d23dae9a40bdeffcfd8be7daf704e8d5.jpg 114KB
Corn_Common_Rust-183-_JPG.rf.6e8e6ea4f986d3f8e05f053925cf3b84.jpg 112KB
Corn_Blight-230-_JPG.rf.fe52137550a2222bc05602585f017f08.jpg 109KB
Corn_Blight-16-_jpg.rf.f4d69a71742aa497938b52aff5417969.jpg 107KB
Corn_Blight-237-_JPG.rf.bf7b67dc9249a35cab62e8dbecb93284.jpg 106KB
Corn_Gray_Spot-176-_JPG.rf.fd7a49d8197934cd3a7fc6afd8d4c65c.jpg 106KB
Corn_Common_Rust-215-_JPG.rf.6e806342ea9e4e782f4d2f9f54a4a50e.jpg 106KB
Corn_Gray_Spot-101-_JPG.rf.8093378f6149beda9a170bbfe2b2d5b7.jpg 103KB
Corn_Health-181-_jpg.rf.bad34853985b494cad22e183060b2829.jpg 102KB
Corn_Gray_Spot-175-_jpg.rf.f866e01ad567d29ca5794e15cd6fecf5.jpg 102KB
Corn_Blight-159-_JPG.rf.2629d804416c6cb45b0144dddebd01d1.jpg 100KB
Corn_Health-22-_jpg.rf.f815239a084042493948f71f3c438e03.jpg 98KB
Corn_Common_Rust-70-_jpg.rf.fbb57ffb16f1897968933c7af0bd9438.jpg 98KB
Corn_Health-14-_jpg.rf.b03f82b8676fd8736c8b995388a2dd0b.jpg 97KB
Corn_Common_Rust-211-_JPG.rf.7d60874745a12371c808495a5e5de4ad.jpg 97KB
Corn_Gray_Spot-197-_JPG.rf.2b0cf1d49d740a2a97f8624efe37394b.jpg 97KB
Corn_Common_Rust-247-_JPG.rf.fad0e98e8d10f8b44b7104abc042abb6.jpg 96KB
Corn_Blight-177-_JPG.rf.25114c7015c72645f5b7a2849bba74bb.jpg 96KB
Corn_Gray_Spot-119-_JPG.rf.251f4f9f86ed307214f760715b53d3af.jpg 96KB
Corn_Gray_Spot-82-_JPG.rf.f62a0259d16377373f4cb19f74e732b9.jpg 95KB
Corn_Blight-70-_jpg.rf.e1eb21003ae015cd8ea780dbab64197b.jpg 93KB
Corn_Common_Rust-126-_JPG.rf.d5453fa575d88326d98fc5a13e027e15.jpg 93KB
Corn_Health-126-_jpg.rf.5a5a3d6d662ce664a77331d6a9c2ed8a.jpg 92KB
Corn_Health-217-_jpg.rf.f7b5a9e39c1cf2f13bdbfa11562c0c0b.jpg 92KB
Corn_Common_Rust-107-_JPG.rf.6074df54c7fb496773fcdb0a48924469.jpg 92KB
Corn_Gray_Spot-14-_jpg.rf.a962df63042d3c95898eb1e1d5fe8712.jpg 92KB
Corn_Health-41-_jpg.rf.41f2288fd28889f043d2444c2f1bdd8a.jpg 91KB
Corn_Common_Rust-39-_jpg.rf.25046d0410f22dd26379ec269c07ba29.jpg 91KB
Corn_Common_Rust-22-_jpg.rf.7b44d70b020b23a67efe434f7a088ded.jpg 91KB
Corn_Gray_Spot-85-_JPG.rf.495c571a7e7265ef35ccb265d524cbf1.jpg 91KB
Corn_Blight-130-_jpg.rf.66998aa8afb5fb1229f731f701944983.jpg 90KB
Corn_Gray_Spot-168-_JPG.rf.ec47326d77e7c50e92d3c608b4c03b3c.jpg 90KB
Corn_Gray_Spot-247-_JPG.rf.649d3a3cb7860dd049ea8e377c4f5810.jpg 90KB
Corn_Health-188-_jpg.rf.1a937a21dfe3fb6740e1c5a65e737e16.jpg 90KB
Corn_Blight-209-_JPG.rf.db44cef4c4130dfe34ebd593b4137669.jpg 90KB
Corn_Blight-72-_jpg.rf.57c181c55aec76455e1ba70128cb8d8f.jpg 89KB
Corn_Blight-245-_JPG.rf.f58ed7b83f99a880c8138cd293dcbb49.jpg 88KB
Corn_Blight-113-_JPG.rf.8a7b2c4620315574546ce6f5566e31ea.jpg 88KB
Corn_Gray_Spot-43-_jpg.rf.60a94e7579272af91ddf1d203e340474.jpg 87KB
Corn_Common_Rust-226-_JPG.rf.db9cdfd370df9ecb3ee04f4cd02e2122.jpg 87KB
Corn_Blight-27-_jpg.rf.648692cdfbc30fd98068c7ec0a6f6b20.jpg 87KB
Corn_Gray_Spot-173-_JPG.rf.515898870cc04a1f1817dbe142dc4b8b.jpg 87KB
Corn_Common_Rust-85-_JPG.rf.71ba23e168535c614db681c8768eeaf7.jpg 86KB
Corn_Gray_Spot-94-_JPG.rf.4cc5ae02ea7d58e1ee9ca5d43052fe24.jpg 86KB
Corn_Health-210-_jpg.rf.bf06a7becd217e266b518da92681084e.jpg 85KB
Corn_Blight-137-_JPG.rf.18d7f86170a8ed078b388d55e7c4b705.jpg 84KB
Corn_Common_Rust-62-_jpg.rf.035efea90a55535c6db377a94ef2fb85.jpg 84KB
Corn_Health-208-_jpg.rf.29fab3bb1b891b2058bb030dc4793e63.jpg 84KB
Corn_Health-143-_jpg.rf.5759354716e2eaccc5e84c716dd7cafa.jpg 84KB
Corn_Gray_Spot-7-_jpg.rf.8103a77d9319bd51817c6dea2371afae.jpg 84KB
Corn_Health-116-_jpg.rf.08749a5a49c63b25af5a1751df4c317c.jpg 84KB
Corn_Gray_Spot-199-_JPG.rf.507d87c98ec6750e8841b95051b1eb3d.jpg 83KB
Corn_Blight-163-_JPG.rf.294728ecb984d230d57c51b4ffa224e8.jpg 81KB
Corn_Blight-75-_jpg.rf.ba9e8ce9bee3e8f6fa0b4881075c808b.jpg 81KB
Corn_Health-139-_jpg.rf.11eef8f00da5fdd50c13b912bb308e48.jpg 81KB
Corn_Common_Rust-209-_JPG.rf.1624a7396c466097312b00a86d808bd5.jpg 81KB
Corn_Gray_Spot-190-_JPG.rf.6dd483ee455a7f06d07c4f3ce8e59ec2.jpg 80KB
Corn_Blight-215-_JPG.rf.82a257aa68ebc6ec417f6fa135f891f8.jpg 80KB
Corn_Gray_Spot-18-_jpg.rf.55962a041ce718715f43e2ce67ea94d8.jpg 80KB
Corn_Health-171-_jpg.rf.42b133555c6c4a1314fb3c3244ed8903.jpg 79KB
Corn_Gray_Spot-108-_JPG.rf.a005ccf777e0b52a6d69c4cccec594f9.jpg 79KB
Corn_Blight-129-_JPG.rf.bc1d9c8475fa55ee0478fb4be43c0907.jpg 79KB
Corn_Health-117-_jpg.rf.e1800d4f11afb41c2f78f7e5a2294eba.jpg 79KB
Corn_Blight-84-_jpg.rf.1d534e6feddbfbde6fd403c23ef4c8bc.jpg 78KB
Corn_Health-209-_jpg.rf.d782dfb19b9e35177d7a9506884bf48c.jpg 77KB
Corn_Health-219-_jpg.rf.34768152dd7e04bbd5a050f82f92469f.jpg 76KB
Corn_Blight-71-_jpg.rf.0af840a46f7bf0404ff91c147d05a09f.jpg 76KB
Corn_Gray_Spot-73-_JPG.rf.141b096a027252ab4b781cf05a87727e.jpg 76KB
Corn_Health-11-_jpg.rf.762842e872273a4d9dd08165d5070eb3.jpg 75KB
Corn_Common_Rust-18-_jpg.rf.57d2ea11f75d07fd40413de078de9753.jpg 74KB
Corn_Common_Rust-183-_JPG.rf.302349d020b40454b2b40f9464e6683d.jpg 73KB
Corn_Blight-187-_JPG.rf.9c91edaddf39a69a599af7a76b122fe9.jpg 73KB
Corn_Common_Rust-89-_JPG.rf.f734129603822837beb63036d45dd013.jpg 73KB
Corn_Gray_Spot-183-_JPG.rf.1a9096727259090fe0d41cc7211e3163.jpg 73KB
Corn_Blight-235-_JPG.rf.f2097f3b08434c0dd59125b210e08b3f.jpg 72KB
Corn_Blight-85-_jpg.rf.2896048c1d46783d77f584c7580bc985.jpg 71KB
Corn_Blight-76-_jpg.rf.00c97c9be9744d882d735c3ca8bd0ea0.jpg 71KB
Corn_Gray_Spot-153-_JPG.rf.d8b030d9dac40377a6016679fad7fb0c.jpg 70KB
Corn_Common_Rust-103-_JPG.rf.4e326826456d7583462a9434bb19f6f8.jpg 69KB
Corn_Blight-85-_jpg.rf.57727f8e961fe1b4328920b073d57dbc.jpg 68KB
Corn_Gray_Spot-86-_JPG.rf.75b5688ef08985bb140e5c084772fc07.jpg 68KB
Corn_Blight-184-_JPG.rf.f45b96c02fbefcb2733d0eabde52315e.jpg 67KB
Corn_Blight-89-_jpg.rf.2b37a8c810888068ca1159dbf8e8088b.jpg 67KB
Corn_Gray_Spot-172-_JPG.rf.715bda0b12d69769e059bee08a671bb6.jpg 67KB
Corn_Health-186-_jpg.rf.ec50ab784215278048e6635862b401b4.jpg 67KB
Corn_Blight-114-_JPG.rf.18d82f7d633795ab17243ac7287313a9.jpg 67KB
Corn_Blight-112-_JPG.rf.8490a2360262d2b0d54943d053a9e9d6.jpg 66KB
Corn_Gray_Spot-236-_JPG.rf.584881f817bce8aebca9721ba6cbe2f0.jpg 65KB
Corn_Gray_Spot-33-_jpg.rf.bc6872747e8233c89a1cad7b355922c9.jpg 65KB
Corn_Gray_Spot-161-_JPG.rf.9ef1c53ba6ac64205d0acd91792d73ec.jpg 65KB
Corn_Blight-225-_JPG.rf.8819713de42a58ff3247e40c55064919.jpg 65KB
Corn_Gray_Spot-113-_jpg.rf.7713972d1dc1a7aea1954a55cd882e73.jpg 65KB
Corn_Common_Rust-159-_JPG.rf.d694798e37f77b4f99830aea4f0c521c.jpg 65KB
Corn_Common_Rust-131-_JPG.rf.cbaff7a019da16711cc72b0fde2caf31.jpg 64KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 929
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功