#include<iostream>
#include<cmath>
#define N 2 // 非线性方程组中方程个数、未知量个数
#define Epsilon 0.0001 // 差向量1范数的上限
#define Max 100 //最大迭代次数
using namespace std;
const int N2=2*N;
int main()
{
void ff(float xx[N],float yy[N]);//计算向量函数的因变量向量yy[N]
void ffjacobian(float xx[N],float yy[N][N]);//计算雅克比矩阵yy[N][N]
void inv_jacobian(float yy[N][N],float inv[N][N]);//计算雅克比矩阵的逆矩阵inv
void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]);//由近似解向量 x0 计算近似解向量 x1
float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm;
int i,j,iter=0;
//如果取消对x0的初始化,撤销下面两行的注释符,就可以由键盘向x0读入初始近似解向量
//for( i=0;i<N;i++)
// cin>>x0[i];
cout<<"初始近似解向量:"<<endl;
for (i=0;i<N;i++)
cout<<x0[i]<<" ";
cout<<endl;cout<<endl;
do
{
iter=iter+1;
cout<<"第 "<<iter<<" 次迭代开始"<<endl;
//计算向量函数的因变量向量 y0
ff(x0,y0);
//计算雅克比矩阵 jacobian
ffjacobian(x0,jacobian);
//计算雅克比矩阵的逆矩阵 invjacobian
inv_jacobian(jacobian,invjacobian);
//由近似解向量 x0 计算近似解向量 x1
newdundiedai(x0, invjacobian,y0,x1);
//计算差向量的1范数errornorm
errornorm=0;
for (i=0;i<N;i++)
errornorm=errornorm+fabs(x1[i]-x0[i]);
if (errornorm<Epsilon) break;
for (i=0;i<N;i++)
x0[i]=x1[i];
} while (iter<Max);
return 0;
}