"第二类边界条件三次样条插值多项式"
知识点一:第二类边界条件三次样条插值多项式的定义
第二类边界条件三次样条插值多项式是一种常用的数值方法,用于近似解决边界值问题。它通过将函数近似为三次多项式,使得函数在边界点上的值满足边界条件。这种方法可以应用于解决各种边界值问题,如热传导、波动方程等。
知识点二:第二类边界条件三次样条插值多项式的计算公式
计算公式为:
1. 输入 n,u
2. 计算步长 h(i) = x(i+1) - x(i)
3. 计算系数阵 A 和右端项 b
4. LU 分解系数阵 A
5. 解方程组,得到解向量 x
计算公式的详细推导过程为:
1. 输入 n,u
2. 计算步长 h(i) = x(i+1) - x(i)
3. 计算系数阵 A:
A(i,i) = 2
A(i,i-1) = a1(i-1)
A(i,i+1) = a2(i)
b(i) = g(i)
其中,a1(i-1) 和 a2(i) 是系数,g(i) 是右端项。
4. LU 分解系数阵 A:
A = LU
L 是下三角矩阵,U 是上三角矩阵
5. 解方程组,得到解向量 x:
x = L\(b/U)
知识点三:Matlab 程序实现
Matlab 程序实现第二类边界条件三次样条插值多项式的计算过程为:
1. 输入 n,u
2. 计算步长 h(i) = x(i+1) - x(i)
3. 计算系数阵 A 和右端项 b
4. LU 分解系数阵 A
5. 解方程组,得到解向量 x
Matlab 程序代码为:
```matlab
n = 8;
x = [0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9];
y = [0.4794 0.6442 0.7833 0.8912 0.9636 0.9975 0.9917 0.9463];
u = [0.6 0.8 1.0 1.2 1.4 1.6 1.8];
p1 = -0.4794;
pn = 0.9463;
for i = 1:n-1
h(i) = x(i+1) - x(i);
end
a2(1) = 1;
g(1) = 3*(y(2)-y(1))/h(1) - p1*h(1)/2;
for k = 2:n-1
a1(k-1) = h(k)/(h(k)+h(k-1));
a2(k) = h(k-1)/(h(k)+h(k-1));
g(k) = 3*a2(k)*(y(k+1)-y(k))/h(k) + 3*a1(k-1)*(y(k)-y(k-1))/h(k-1);
end
a1(n-1) = 1;
g(n) = 3*(y(n)-y(n-1))/h(n-1) - pn*h(n-1)/2;
b1(1) = 2;
m(1) = g(1)/2;
b2(1) = a2(1)/b1(1);
for i = 2:n
b1(i) = 2 - a1(i-1)*b2(i-1);
if(i ~= n)
b2(i) = a2(i)/b1(i);
end
m(i) = (g(i) - a1(i-1)*m(i-1))/b1(i);
end
for i = n-1:-1:1
m(i) = m(i) - b2(i)*m(i+1);
end
p = 7;
for j = 1:p
for i = 1:n
if((u(j) >= x(i)) && (u(j) < x(i+1)))
k = i;
break;
end
end
s(j) = 0;
s(j) = s(j) + (h(k) + 2*(u(j) - x(k)))*(u(j) - x(k+1))^2*y(k)/(h(k))^3;
s(j) = s(j) + (h(k) - 2*(u(j) - x(k+1)))*(u(j) - x(k))^2*y(k+1)/(h(k))^3;
s(j) = s(j) + (u(j) - x(k))*(u(j) - x(k+1))^2*m(k)/(h(k))^2;
s(j) = s(j) + (u(j) - x(k+1))*(u(j) - x(k))^2*m(k+1)/(h(k))^2;
end
```
知识点四:测试数据及结果
测试数据为_sin(x)_函数的值:
| x | 0.5 | 0.7 | 0.9 | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| sin(x) | 0.4794 | 0.6442 | 0.7833 | 0.8912 | 0.9636 | 0.9975 | 0.9917 | 0.9463 |
计算结果为:
| x | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| 近似值 | 0.5523 | 0.7345 | 0.9091 | 1.0742 | 1.2311 | 1.3845 | 1.5354 |
知识点五:心得体会
通过本实验,同学们可以更深入地理解三次样条插值多项式的基本原理,并通过数值算例使同学们更好地领会三次样条插值多项式具有较高的准备性。
- 1
- 2
前往页