# RefineNet_TensorRT
## environment
Ubuntu1604
Pytorch 0.41
TensorRT5.1.5
OpenCV3.4.8
## Build
1. configure your TensorRT path in CMakeLists.txt
2. make:
```
mkdir build && cd build
cmake ..
make -j8
```
3.
```
./RefineNet s float16(float32) refinenet.engine ../vid/demo.mp4 ../refinenet.onnx
```
4. serialize the engine from onnx model:
```
./RefineNet s float16(float32) refinenet.engine ../vid/face.mp4 ../refinenet.onnx
```
5. deserialize the engine and infer:
```
./RefineNet infer float16 refinenet.engine ../vid/face.mp4
```
<img src="./image/d94be52120f2aa2cfbd7c12f10817b04.jpeg" style="zoom:25%;" />
<img src="./image/Screenshot from 2020-08-16 13-39-14.png" style="zoom: 50%;" />
## Performance
| Model | FPS |
| ------- | ---- |
| Pytorch | 5 |
| FP32 | 27 |
| FP16 | 33 |
__AtYou__
- 粉丝: 3508
- 资源: 2175