# 玻璃绝缘子检测
- [玻璃绝缘子检测](#玻璃绝缘子检测)
- [数据准备](#数据准备)
- [训练](#训练)
- [测试](#测试)
- [效果](#效果)
- [To do](#to-do)
- [经验总结](#经验总结)
- [更新](#更新)
## 数据准备
30张6000x6000以上的高分辨率图片
选取7张作为测试集 **测试集背景信息应该要多样**
![原图](./README_IMAGES/1.png)
使用YOLT的思想,将训练集/测试集的每一张图都裁剪成608x608的小图,命名格式:“原图名称 _ 左上角坐标 _ 图像大小 _ 原图大小"
如“003_0_0_608_608__6016_4016.JPG”
YOLT论文:https://arxiv.org/abs/1805.09512
![裁剪后的小图](./README_IMAGES/2.png)
对训练集/测试集裁剪后的小图做标注,得到xml文件,转成yolo格式
此时,
训练集图片:2692张 标注:156个
测试集图片:666张 标注:41个
对没有目标的负样本,使用空白的txt文件做标注
用albumentations对训练集含有标注的156个图像做数据增强:随机翻转,随机旋转90°,亮度对比度变化,缩小后填充黑边再随机旋转0-90°,最终得到图片5188张,负样本正样本比例大约1:1。
## 训练
使用darknet版yolov4训练 : https://github.com/AlexeyAB/darknet
两块2080训练 先用k-means聚类 网络输入416x416 batch=16 sub=8 再预训练模型上跑8000个epoch 准确率达到97%
## 测试
把一张图裁剪成608x608的若干小图依次放入网络进行检测,最终检测框的坐标加上图片所属左上角的坐标得到在原图中的绝对坐标,然后对原图上的所有框做一个nms,得到最终的检测图。
## 效果
![效果图样例](./README_IMAGES/3.png)
## 泛化
在“数字电网开发者大会——小样本输电线路玻璃绝缘子自爆程度识别”训练集上的泛化效果
![泛化效果图样例](./README_IMAGES/4.png)
## To do
- [ ] 图片串行输入改为并行,提升速度
- [x] 检测时提高网络的分辨率,提升精度
- [x] 检测时裁剪为比608x608更大的小图,减少小图数目,提高速度
## 经验总结
1.最开始考虑速度,用得yolov4-tiny,效果很不好,换成yolov4后效果变好,师姐说要**优先考虑精度,然后优化速度。**
2.数据增强时尝试过模糊,噪声等,效果不好,最后问师姐,原因是图片本身很高清,不用加模糊和噪声。
**图像增强应该符合目标本身的特征,即目标有大小,方向,亮度变化,那么增强时也可以做这些变化,目标并不模糊,增强时就不做模糊。**
3.最开始划分训练集和测试集的两种方案效果都不好:
(1)裁剪全部30张图,然后对197个正样本做增强使正负样本1:1,然后随机划分训练集和测试集;
(2)裁剪全部30张图,然后对197个正样本做增强使正负样本1:1,然后把原始正样本做测试集,增强得到的正样本加原始负样本做训练集;
这两种情况都和真实的图片情况不一致,真实的图片裁剪后,正样本只是极少的部分,5%左右,而第一种随机划分使测试集的正样本达到50%,第二种更是只有正样本,因此网络训练时就偏离了实际情况。
**最开始划分数据集,验证集,测试集时,要在原图上做划分,训练方法如数据增强等,只能用在训练集上。**
4.按照darknet主页的说法,没有目标的负样本和有目标的正样本,训练时最好1:1,并且为负样本添加空的txt文件作为标注。
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
缺陷检测_高压输电线玻璃绝缘子缺陷检测项目_附源码+效果展示_优质项目实战.zip (47个子文件)
缺陷检测_高压输电线玻璃绝缘子缺陷检测项目_附源码+效果展示_优质项目实战
README_IMAGES
3.png 1.33MB
1.png 383KB
4.png 1.44MB
2.png 531KB
.git
index 2KB
HEAD 21B
refs
heads
main 41B
tags
remotes
origin
HEAD 30B
objects
pack
pack-16b06fcf7e026a94ae095de38e4b832a8c28d898.pack 8.02MB
pack-16b06fcf7e026a94ae095de38e4b832a8c28d898.rev 584B
pack-16b06fcf7e026a94ae095de38e4b832a8c28d898.idx 5KB
info
description 73B
packed-refs 112B
info
exclude 240B
logs
HEAD 199B
refs
heads
main 199B
remotes
origin
HEAD 199B
hooks
post-update.sample 189B
sendemail-validate.sample 2KB
prepare-commit-msg.sample 1KB
commit-msg.sample 896B
pre-receive.sample 544B
update.sample 4KB
pre-commit.sample 2KB
pre-rebase.sample 5KB
applypatch-msg.sample 478B
fsmonitor-watchman.sample 5KB
push-to-checkout.sample 3KB
pre-applypatch.sample 424B
pre-push.sample 1KB
pre-merge-commit.sample 416B
config 347B
README.md 4KB
code
detecte.py 2KB
gen_empty_label.py 292B
tool
utils.py 6KB
region_loss.py 9KB
yolo_layer.py 12KB
darknet2pytorch.py 20KB
torch_utils.py 3KB
README.md 58B
config.py 11KB
split.py 1KB
xml2label.py 1KB
aug.py 2KB
gen_train_valid_txt.py 611B
yolo.py 2KB
共 47 条
- 1
资源评论
__AtYou__
- 粉丝: 3486
- 资源: 2152
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 个人练习-练习版内网通?
- 支持向量机 - SVM支持向量机
- 可以识别视频语音自动生成字幕SRT文件的开源 Windows-GUI 软件工具.zip
- 基于SpringBoot框架和SaaS模式,立志为中小企业提供开源好用的ERP软件,目前专注进销存+财务+生产功能
- C#ASP.NET口腔门诊会员病历管理系统源码 门诊会员管理系统源码数据库 SQL2008源码类型 WebForm
- 灰狼优化算法(Grey Wolf Optimizer,GWO)是一种群智能优化算法
- C语言课程设计项目之扫雷项目源码.zip
- 基于 promise 的网络请求库,可以运行 node.js 和浏览器中 本库基于Axios 原库v1.3.4版本进行适配
- JAVA的SpringBoot宠物医院管理系统源码数据库 MySQL源码类型 WebForm
- 基于Huawei LiteOS内核演进发展的新一代内核,Huawei LiteOS是面向IoT领域构建的轻量级物联网操作系统
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功