%_________________________________________________________________________%
% 麻雀优化算法 %
%_________________________________________________________________________%
function [Best_score,Best_pos,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)
ST = 0.6;%预警值
PD = 0.7;%发现者的比列,剩下的是加入者
SD = 0.2;%意识到有危险麻雀的比重
PDNumber = pop*PD; %发现者数量
SDNumber = pop - pop*PD;%意识到有危险麻雀数量
if(max(size(ub)) == 1)
ub = ub.*ones(1,dim);
lb = lb.*ones(1,dim);
end
%种群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%计算初始适应度值
fitness = zeros(1,pop);
for i = 1:pop
fitness(i) = fobj(X(i,:));
end
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
GBestF = fitness(1);%全局最优适应度值
for i = 1:pop
X(i,:) = X0(index(i),:);
end
curve=zeros(1,Max_iter);
GBestX = X(1,:);%全局最优位置
X_new = X;
for i = 1: Max_iter
BestF = fitness(1);
WorstF = fitness(end);
R2 = rand(1);
for j = 1:PDNumber
if(R2<ST)
X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));
else
X_new(j,:) = X(j,:) + randn()*ones(1,dim);
end
end
for j = PDNumber+1:pop
% if(j>(pop/2))
if(j>(pop - PDNumber)/2 + PDNumber)
X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);
else
%产生-1,1的随机数
A = ones(1,dim);
for a = 1:dim
if(rand()>0.5)
A(a) = -1;
end
end
AA = A'*inv(A*A');
X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';
end
end
Temp = randperm(pop);
SDchooseIndex = Temp(1:SDNumber);
for j = 1:SDNumber
if(fitness(SDchooseIndex(j))>BestF)
X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));
elseif(fitness(SDchooseIndex(j))== BestF)
K = 2*rand() -1;
X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));
end
end
%边界控制
for j = 1:pop
for a = 1: dim
if(X_new(j,a)>ub)
X_new(j,a) =ub(a);
end
if(X_new(j,a)<lb)
X_new(j,a) =lb(a);
end
end
end
%更新位置
for j=1:pop
fitness_new(j) = fobj(X_new(j,:));
end
for j = 1:pop
if(fitness_new(j) < GBestF)
GBestF = fitness_new(j);
GBestX = X_new(j,:);
end
end
X = X_new;
fitness = fitness_new;
%排序更新
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
for j = 1:pop
X(j,:) = X(index(j),:);
end
curve(i) = GBestF;
end
Best_pos =GBestX;
Best_score = curve(end);
end
没有合适的资源?快使用搜索试试~ 我知道了~
【GRNN分类】麻雀算法优化广义神经网络SSA-GRNN数据分类【含Matlab源码 3366期】.zip
共15个文件
m:10个
mat:2个
xlsx:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 3 浏览量
2024-06-23
09:18:08
上传
评论
收藏 140KB ZIP 举报
温馨提示
Matlab领域上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:ga_2d_box_packing_test_task.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除ga_2d_box_packing_test_task.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 5 机器学习和深度学习方面 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
资源推荐
资源详情
资源评论
收起资源包目录
【GRNN分类】麻雀算法优化广义神经网络SSA-GRNN数据分类【含Matlab源码 3366期】.zip (15个子文件)
【GRNN分类】基于matlab麻雀算法优化广义神经网络SSA-GRNN数据分类【含Matlab源码 3366期】
Bounds.m 211B
initialization.m 567B
三维数据.xlsx 93KB
SSA.m 3KB
main1.m 1KB
wine.mat 20KB
Decode.m 1KB
Code.m 420B
运行结果.png 22KB
test.m 291B
main2.m 1KB
fun.m 183B
海神之光.jpg 16KB
boundary.m 227B
data.mat 648B
共 15 条
- 1
资源评论
Matlab领域
- 粉丝: 3w+
- 资源: 3183
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 虚拟电脑病毒无害无需资源
- 探索Python数据可视化:Matplotlib库的深入指南
- 全站数据爬取技术与实践:方法、代码与策略
- 微信自动抢红包APP.zip毕业设计参考学习资料
- 为 Wireshark 能使用纯真网络 IP 数据库(QQwry)而提供的格式转换工具.zip
- 音频格式转换工具.zip学习资料程序资源
- 自用固件,合并openwrt和immortalwrt编译AX6(刷机有风险).zip
- 最新GeoLite2-City.mmdb,GeoLite2-Country.mmdb打包下载
- 基于BootStrap + Springboot + FISCO-BCOS的二手物品交易市场系统.zip
- 使用Java语言编写的九格拼游戏,找寻下曾经小时候的记忆.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功