<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https:/
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv5-Deepsort 车辆和行人目标跟踪+车辆行人数据集
共244个文件
py:59个
pyc:53个
yaml:41个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 4 下载量 65 浏览量
2022-12-16
13:13:27
上传
评论 4
收藏 910.34MB ZIP 举报
温馨提示
YOLOv5-deepsort 车辆和行人目标跟踪,代码已配置好,下载后配置环境就可以使用,包括有训练好的YOLOv5s-person_car.pt模型,并附上了测试视频,并可提取目标运动的质心坐标以及可以绘制出目标 的运动轨迹,有使用说明可以参考,目标类别名为person、car,包含有标注好的数据集, https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv5-Deepsort 车辆和行人目标跟踪+车辆行人数据集 (244个子文件)
events.out.tfevents.1668951267.DESKTOP-AJP7QI2.90856.0 1.06MB
001.avi 2.55MB
results.csv 44KB
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
track_all.gif 7.83MB
track_pedestrians.gif 3.63MB
.gitattributes 75B
.gitignore 4KB
.gitignore 89B
.gitignore 50B
.gitignore 50B
.gitignore 9B
.gitkeep 0B
.gitmodules 85B
yolov5-master-newest.iml 495B
Yolov5_DeepSort_Pytorch-master-newest.iml 492B
tutorial.ipynb 48KB
labels_correlogram.jpg 533KB
train_batch0.jpg 492KB
bus.jpg 476KB
train_batch2.jpg 467KB
train_batch1.jpg 395KB
val_batch1_pred.jpg 377KB
val_batch2_pred.jpg 374KB
val_batch1_labels.jpg 361KB
val_batch2_labels.jpg 359KB
val_batch0_labels.jpg 345KB
val_batch0_pred.jpg 341KB
labels.jpg 293KB
zidane.jpg 165KB
train.jpg 59KB
LICENSE 34KB
LICENSE 34KB
LICENSE 1KB
README.md 14KB
README.md 10KB
CONTRIBUTING.md 5KB
README.md 5KB
README.md 4KB
README.md 2KB
bug-report.md 1KB
feature-request.md 739B
question.md 139B
README.md 65B
person_test.mp4 104.46MB
vid-1.mp4 32.37MB
vid-3.mp4 15.81MB
.name 8B
results.png 230KB
F1_curve.png 141KB
R_curve.png 139KB
PR_curve.png 123KB
P_curve.png 123KB
confusion_matrix.png 84KB
yolov5s.pt 14.11MB
best.pt 13.69MB
last.pt 13.69MB
datasets.py 42KB
general.py 33KB
train.py 31KB
wandb_utils.py 25KB
tf.py 20KB
plots.py 19KB
common.py 19KB
val.py 17KB
export.py 16KB
detect.py 15KB
yolo.py 14KB
torch_utils.py 14KB
metrics.py 13KB
json_logger.py 11KB
augmentations.py 11KB
track.py 10KB
loss.py 9KB
kalman_filter.py 8KB
linear_assignment.py 8KB
autoanchor.py 7KB
__init__.py 6KB
train.py 6KB
downloads.py 6KB
hubconf.py 6KB
tracker.py 6KB
nn_matching.py 6KB
track.py 5KB
io.py 4KB
experimental.py 4KB
deep_sort.py 4KB
activations.py 4KB
evaluation.py 3KB
model.py 3KB
original_model.py 3KB
iou_matching.py 3KB
test.py 2KB
callbacks.py 2KB
preprocessing.py 2KB
feature_extractor.py 2KB
detection.py 1KB
resume.py 1KB
共 244 条
- 1
- 2
- 3
资源评论
- 小科谈搬砖工2023-09-28资源内容详细,总结地很全面,与描述的内容一致,对我启发很大,学习了。
- 星空之龙2023-07-10这个资源对我启发很大,受益匪浅,学到了很多,谢谢分享~
- l18739895812023-10-08资源很受用,资源主总结的很全面,内容与描述一致,解决了我当下的问题。
- beautiful_code_2023-12-06感谢大佬分享的资源,对我启发很大,给了我新的灵感。
XTX_AI
- 粉丝: 5969
- 资源: 1330
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功