# Pytorch-YOLOv4
![](https://img.shields.io/static/v1?label=python&message=3.6|3.7&color=blue)
![](https://img.shields.io/static/v1?label=pytorch&message=1.4&color=<COLOR>)
[![](https://img.shields.io/static/v1?label=license&message=Apache2&color=green)](./License.txt)
A minimal PyTorch implementation of YOLOv4.
- Paper Yolo v4: https://arxiv.org/abs/2004.10934
- Source code:https://github.com/AlexeyAB/darknet
- More details: http://pjreddie.com/darknet/yolo/
- [x] Inference
- [x] Train
- [x] Mocaic
```
├── README.md
├── dataset.py dataset
├── demo.py demo to run pytorch --> tool/darknet2pytorch
├── demo_darknet2onnx.py tool to convert into onnx --> tool/darknet2pytorch
├── demo_pytorch2onnx.py tool to convert into onnx
├── models.py model for pytorch
├── train.py train models.py
├── cfg.py cfg.py for train
├── cfg cfg --> darknet2pytorch
├── data
├── weight --> darknet2pytorch
├── tool
│ ├── camera.py a demo camera
│ ├── coco_annotation.py coco dataset generator
│ ├── config.py
│ ├── darknet2pytorch.py
│ ├── region_loss.py
│ ├── utils.py
│ └── yolo_layer.py
```
![image](https://user-gold-cdn.xitu.io/2020/4/26/171b5a6c8b3bd513?w=768&h=576&f=jpeg&s=78882)
# 0. Weights Download
## 0.1 darknet
- baidu(https://pan.baidu.com/s/1dAGEW8cm-dqK14TbhhVetA Extraction code:dm5b)
- google(https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT)
## 0.2 pytorch
you can use darknet2pytorch to convert it yourself, or download my converted model.
- baidu
- yolov4.pth(https://pan.baidu.com/s/1ZroDvoGScDgtE1ja_QqJVw Extraction code:xrq9)
- yolov4.conv.137.pth(https://pan.baidu.com/s/1ovBie4YyVQQoUrC3AY0joA Extraction code:kcel)
- google
- yolov4.pth(https://drive.google.com/open?id=1wv_LiFeCRYwtpkqREPeI13-gPELBDwuJ)
- yolov4.conv.137.pth(https://drive.google.com/open?id=1fcbR0bWzYfIEdLJPzOsn4R5mlvR6IQyA)
# 1. Train
[use yolov4 to train your own data](Use_yolov4_to_train_your_own_data.md)
1. Download weight
2. Transform data
For coco dataset,you can use tool/coco_annotation.py.
```
# train.txt
image_path1 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
image_path2 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
...
...
```
3. Train
you can set parameters in cfg.py.
```
python train.py -g [GPU_ID] -dir [Dataset direction] ...
```
# 2. Inference
## 2.1 Performance on MS COCO dataset (using pretrained DarknetWeights from <https://github.com/AlexeyAB/darknet>)
**ONNX and TensorRT models are converted from Pytorch (TianXiaomo): Pytorch->ONNX->TensorRT.**
See following sections for more details of conversions.
- val2017 dataset (input size: 416x416)
| Model type | AP | AP50 | AP75 | APS | APM | APL |
| ------------------- | ----------: | ----------: | ----------: | ----------: | ----------: | ----------: |
| DarkNet (YOLOv4 paper)| 0.471 | 0.710 | 0.510 | 0.278 | 0.525 | 0.636 |
| Pytorch (TianXiaomo)| 0.466 | 0.704 | 0.505 | 0.267 | 0.524 | 0.629 |
| TensorRT FP32 + BatchedNMSPlugin | 0.472| 0.708 | 0.511 | 0.273 | 0.530 | 0.637 |
| TensorRT FP16 + BatchedNMSPlugin | 0.472| 0.708 | 0.511 | 0.273 | 0.530 | 0.636 |
- testdev2017 dataset (input size: 416x416)
| Model type | AP | AP50 | AP75 | APS | APM | APL |
| ------------------- | ----------: | ----------: | ----------: | ----------: | ----------: | ----------: |
| DarkNet (YOLOv4 paper)| 0.412 | 0.628 | 0.443 | 0.204 | 0.444 | 0.560 |
| Pytorch (TianXiaomo)| 0.404 | 0.615 | 0.436 | 0.196 | 0.438 | 0.552 |
| TensorRT FP32 + BatchedNMSPlugin | 0.412| 0.625 | 0.445 | 0.200 | 0.446 | 0.564 |
| TensorRT FP16 + BatchedNMSPlugin | 0.412| 0.625 | 0.445 | 0.200 | 0.446 | 0.563 |
## 2.2 Image input size for inference
Image input size is NOT restricted in `320 * 320`, `416 * 416`, `512 * 512` and `608 * 608`.
You can adjust your input sizes for a different input ratio, for example: `320 * 608`.
Larger input size could help detect smaller targets, but may be slower and GPU memory exhausting.
```py
height = 320 + 96 * n, n in {0, 1, 2, 3, ...}
width = 320 + 96 * m, m in {0, 1, 2, 3, ...}
```
## 2.3 **Different inference options**
- Load the pretrained darknet model and darknet weights to do the inference (image size is configured in cfg file already)
```sh
python demo.py -cfgfile <cfgFile> -weightfile <weightFile> -imgfile <imgFile>
```
- Load pytorch weights (pth file) to do the inference
```sh
python models.py <num_classes> <weightfile> <imgfile> <IN_IMAGE_H> <IN_IMAGE_W> <namefile(optional)>
```
- Load converted ONNX file to do inference (See section 3 and 4)
- Load converted TensorRT engine file to do inference (See section 5)
## 2.4 Inference output
There are 2 inference outputs.
- One is locations of bounding boxes, its shape is `[batch, num_boxes, 1, 4]` which represents x1, y1, x2, y2 of each bounding box.
- The other one is scores of bounding boxes which is of shape `[batch, num_boxes, num_classes]` indicating scores of all classes for each bounding box.
Until now, still a small piece of post-processing including NMS is required. We are trying to minimize time and complexity of post-processing.
# 3. Darknet2ONNX
- **This script is to convert the official pretrained darknet model into ONNX**
- **Pytorch version Recommended:**
- Pytorch 1.4.0 for TensorRT 7.0 and higher
- Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
- **Install onnxruntime**
```sh
pip install onnxruntime
```
- **Run python script to generate ONNX model and run the demo**
```sh
python demo_darknet2onnx.py <cfgFile> <weightFile> <imageFile> <batchSize>
```
## 3.1 Dynamic or static batch size
- **Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic**
- Dynamic batch size will generate only one ONNX model
- Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)
# 4. Pytorch2ONNX
- **You can convert your trained pytorch model into ONNX using this script**
- **Pytorch version Recommended:**
- Pytorch 1.4.0 for TensorRT 7.0 and higher
- Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
- **Install onnxruntime**
```sh
pip install onnxruntime
```
- **Run python script to generate ONNX model and run the demo**
```sh
python demo_pytorch2onnx.py <weight_file> <image_path> <batch_size> <n_classes> <IN_IMAGE_H> <IN_IMAGE_W>
```
For example:
```sh
python demo_pytorch2onnx.py yolov4.pth dog.jpg 8 80 416 416
```
## 4.1 Dynamic or static batch size
- **Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic**
- Dynamic batch size will generate only one ONNX model
- Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)
# 5. ONNX2TensorRT
- **TensorRT version Recommended: 7.0, 7.1**
## 5.1 Convert from ONNX of static Batch size
- **Run the following command to convert YOLOv4 ONNX model into TensorRT engine**
```sh
trtexec --onnx=<onnx_file> --explicitBatch --saveEngine=<tensorRT_engine_file> --workspace=<size_in_megabytes> --fp16
```
- Note: If you want to use int8 mode in conversion, extra int8 calibration is needed.
## 5.2 Convert from ONNX of dynamic Batch size
- **Run the following comma
评论0