没有合适的资源?快使用搜索试试~ 我知道了~
506549_Grantley_PDG_506549_v1.5.2The Grantley platform consists of the Haswell-EP processor, Haswell-EP 4S processor or Haswell-EN processor used in conjunction with the Wellsburg PCH. This is a twochip platform as opposed to traditional three-chip platforms (CPU, Memory Controller and I/O Controller) made possible because this family of processors includes an integrated memory controller (IMC) and integrated I/O (IIO) (such as PCI Express* and DMI2) on a single silicon die. The Grantley platform supports only a single PCH connected to CPU0.
资源推荐
资源详情
资源评论
Document Number: 544905
VR13.0 PWM
Server VR Vendor PWM Enabling Specification
March 2014
Revision 1.0
Intel Confidential
2 Intel Confidential Document Number: 544905, Revision 1.0
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU
SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR
WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,
not across different processor families. See http://www.intel.com/products/processor_number for details.
The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.
The code names presented in this document are only for use by Intel to identify products, technologies, or services in development,
that have not been made commercially available to the public, i.e., announced, launched, or shipped. They are not "commercial"
names for products or services and are not intended to function as trademarks.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by
calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com/design/literature.htm.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.
* Other brands and names may be claimed as the property of others.
Copyright © 2013-2014 Intel Corporation. All rights reserved.
Document Number: 544905, Revision: 1.0 Intel Confidential 3
Contents
1. Introduction ........................................................................................ 7
1.1 Purpose of this document .............................................................. 7
1.2 Terminology ................................................................................ 7
2. Market Segment Definitions .............................................................. 11
2.1 Server, Microserver & Xeon Phi Market Segments........................... 11
2.2 Dual Output VR Features ............................................................. 12
2.3 Summary of Supported Features .................................................. 13
3. VID Operating Features..................................................................... 17
3.1 SerialVID (SVID) Overview and Physical Layer ............................... 17
3.1.1 SVID DC Electrical Parameters - required ............................ 17
3.1.2 VCLK Timing Parameters - required .................................... 18
3.1.3 Data Sampling and Timing Analysis .................................... 19
3.1.4 Platform Bus Timing - all market segments ......................... 20
3.1.5 SVID Routing Guidelines ................................................... 21
3.2 Addressing - required all segments ............................................... 22
3.3 VID Table .................................................................................. 24
3.4 Dynamic Voltage Identification (DVID) .......................................... 34
3.4.1 Dynamic VID Slew Rates ................................................... 34
3.4.2 T_Alert and Voltage Settled Function .................................. 35
3.5 VR Power States (PS) ................................................................. 38
3.5.1 PS0 ................................................................................ 39
3.5.2 PS1 ................................................................................ 39
3.5.3 PS2 ................................................................................ 39
3.5.4 PS3 - Optional ................................................................. 39
3.5.5 PS4 - Optional ................................................................. 40
3.5.6 Power State Exit Latencies ................................................ 40
3.6 Automatic Phase Shedding .......................................................... 40
3.7 Independent Efficiency Optimization – IVID Opt. Server segments ... 40
3.8 DC_LL or AVP ............................................................................ 41
3.9 VR13.0 Vboot Levels ................................................................... 41
3.9.1 High-Volume Manufacturing Test on PCB ............................. 41
3.10 IMON, Output Current Monitoring (15h) ........................................ 42
3.11 Input Power Sensor (1Bh) ........................................................... 46
3.11.1 Input Sensor Targets ........................................................ 48
3.11.2 PWR_IN_Alert# Signal, Input Power Alert ........................... 48
3.11.3 Working Points SetWP Command ....................................... 49
4. Startup Sequence .............................................................................. 50
4.1 Typical Platform VR13.0 Non-Zero Vboot Startup Sequence ............. 50
4.2 DDR4 Memory Application Sequencing .......................................... 52
4.3 Microserver Application Sequencing .............................................. 52
4.4 VR_Enable - required all segments ............................................... 52
4.5 Undervoltage Lockout (UVLO) - required all segments .................... 53
4.6 Soft Start (SS) - optional all segments .......................................... 53
5. Shutdown .......................................................................................... 54
5.1 VCCIO Fault Shutdown ................................................................ 54
4 Intel Confidential Document Number: 544905, Revision: 1.0
6. General Operation ............................................................................. 55
6.1 Phase Current Sense Input - expected .......................................... 55
6.2 Error Amp Specification - expected ............................................... 55
6.3 PWM Operating Frequency - expected ........................................... 55
6.4 Differential Remote Sense Input - required .................................... 55
6.5 Output Indicators ....................................................................... 56
6.5.1 VR_Ready - required ........................................................ 56
6.5.2 Thermal Monitoring - required ........................................... 56
6.6 Output Protection ....................................................................... 59
6.6.1 Overvoltage Protection (OVP) - proposed ............................ 59
6.6.2 Overcurrent Protection (OCP) - proposed ............................ 60
6.6.3 Catastrophic Fault Detect – expected for server segment ...... 60
6.7 VR tolerance .............................................................................. 60
6.7.1 Load Line Definitions - required all segments ....................... 60
6.7.2 Voltage Tolerance - required all segments ........................... 61
6.7.3 Load Line Thermal Compensation - required all segments ..... 61
6.7.4 Input Voltage Range ......................................................... 62
6.8 No Load Operation - required all segments .................................... 62
7. Design Collateral ............................................................................... 63
7.1 Demo, Test Board Requirement (VRTB) - required .......................... 63
7.2 Computer Models - required ........................................................ 63
7.3 VR Tolerance Band Calculator - required ...................................... 63
8. PMBus/SMBus Support for Server and Client Platforms – Optional ... 64
8.1 PMBus/SMBus Data Format and Command Support Recommendation64
8.2 PMBus/SMBus Device Addressing ................................................. 65
9. Overclocking for Extreme Edition Client Platform – Optional ............. 66
9.1 SVID Bus Frequency and Signal Integrity ...................................... 66
9.2 Voltage Margining ...................................................................... 66
9.2.1 Extended VID Table .......................................................... 66
9.2.2 Offset Voltage Margining ................................................... 67
9.2.3 Fixed Voltage Margining .................................................... 67
9.3 Other Performance Tuning and Settings ........................................ 67
Document Number: 544905, Revision: 1.0 Intel Confidential 5
Figures
Figure 3-1 Definition of Hysteresis ...................................................................................17
Figure 3-2 Measurement Points for VCLK high, low, rise, and fall time, Tperiod .....................19
Figure 3-3 Serial VID Bit Transfer Concept ........................................................................19
Figure 3-4 Clock/Data Sample CPU Driving Timing Definitions .............................................20
Figure 3-5 Clock/Data Sample VR Driving Timing Definitions (all segments) .........................20
Figure 3-6 Typical SVID Daisy Chain Topologies ................................................................22
Figure 3-7 Dynamic VID Avershoot Allowance ...................................................................36
Figure 3-8 VR settled, T_Alert from Low to High, from PS0, PS1, PS2 ..................................36
Figure 3-9 VR settled, T_Alert Starting from PS3 with SetVID Command ..............................37
Figure 3-10 VID Down VR_Settled and T_Alert ....................................................................38
Figure 3-11 Example of Efficiency Targets in Various Power States ........................................39
Figure 3-12 IMON Averaging Limits including: sample, register update delays ........................43
Figure 3-13 CPU Domain Input Power Sensor Concept .........................................................47
Figure 3-14 Memory Domain Input Power Sensor Concept ....................................................47
Figure 4-1 Typical VR Startup Timings..............................................................................51
Figure 4-2 VR Enable Deassertion Timings ........................................................................53
Figure 6-1 Thermal Zone and Detection Encoding (required servers, optional client) ..............57
Figure 6-2 VR_Hot#, SVID Thermal Alert without Thermal Zone Register support ..................58
Figure 6-3 VR_Hot#, SVID Thermal Alert for PWM ICs that Support Thermal Zone ................58
Figure 6-4 VR Tolerance Definitions (neglecting overshoot relief).........................................61
Tables
Table 1-1 Feature Support Terminology ........................................................................... 7
Table 1-2 Glossary ........................................................................................................ 7
Table 2-1 Mainstream Server, Microserver & Xeon Phi Market Segments VR13.0 Parameters .11
Table 2-2 Required Serial VID Registers and Functions .....................................................13
Table 3-1 VR DC Electrical Parameters ............................................................................17
Table 3-2 VR AC Electrical Parameters ............................................................................18
Table 3-3 VCLK AC Timing Parameters ............................................................................18
Table 3-4 Address Definitions per Socket ........................................................................23
Table 3-5 Input Sensors Locations on Xeon Memory VR’s ..................................................24
Table 3-6 VR13.0 VID Range and Power State Support .....................................................24
Table 3-7 VID Table ......................................................................................................25
Table 3-8 Overshoot Durations ......................................................................................35
Table 3-9 Preliminary Vboot Voltage Levels .....................................................................41
Table 3-10 IMON Averaging Rates ....................................................................................42
Table 3-11 IMON Accuracy Targets, 5% DCR inductors, 1% NTC ..........................................45
Table 3-12 IMON Accuracy Targets, 7% DCR inductors, 3% NTC ..........................................45
Table 3-13 IMON Accuracy Targets, MOSFET Power Stage Sensing .......................................46
Table 3-14 Work Point Voltage Mapping examples ..............................................................49
Table 4-1 VR Startup and Enable Timings ........................................................................51
Table 4-2 Enable Pin Voltage Levels ................................................................................53
Table 6-1 Open Drain Output Signal Specifications (VR_Ready)..........................................56
Table 6-2 Input Voltage by Segment ..............................................................................62
Table 8-1 Minimum Recommended PMBus Command Set ..................................................65
剩余67页未读,继续阅读
资源评论
weixin_44919540
- 粉丝: 0
- 资源: 2
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于蒙特卡洛抽样的电动汽车充电负荷计算(matlab代码版) 主要内容:代码主要主要研究的的是大规模电动汽车的蒙特卡洛模拟,包括电动汽车起始充电时间以及每日行使里程的概率密度分布,在此基础上,进一步计
- MATLAB代码:基于粒子群算法的含风光燃储微网优化调度 关键词:微网优化调度 粒子群算法 风光燃储 参考文档:《基于多目标粒子群算法的微电网优化调度-王金全》仅参考部分模型,非完全复现 优势:代码
- kmeans聚类,肘部法确定聚类个数 代码对数据先进行归一化然后聚类 可设定聚类个数范围,根据肘部法选择合适的聚类个数 可求得每类的具体数据 matlab代码,备注清楚,更改为自己的数据和要求即可
- 同步机VSG DFIG双馈风电机组同步机控制,并网端电源分为理想电源或同步发电机 机组1.5MW,采用控制策略如图片所示 (附赠同步机简易模型)
- P3分布参数拟合与ks检验,累计概率密度画图 对数据进行3参数拟合(形状、尺度、位置参数),可设置ks检验的显著性水平 matlab代码,备注清楚,更改为自己的数据即可
- FLAC3D水力压裂例子,可以拿来参考,有单孔和双孔
- 基于高频脉振电压注入的PMSM无传感器控制 无感控制,高频电压注入 1.包括位置观测器构成是带通滤波器加低通滤波器,采用PLL锁相环,是离散模型 2.也有连续模型,用的是龙贝格观测器提取转子位置和转速
- 拉锥光纤,镀膜、耦合、光栅…… Rsoft beamprop,光纤仿真,光子晶体光纤仿真
- 基于floyd算法的路径规划算法matlab代码,求解常见的路径规划问题 内含算法的注释,模块化编程,新手小白可快速入门 佛洛依德算法,路径规划算法,栅格地图
- 二维互相关随机场模拟实践,保姆级教程 基于matlab与flac6.0的乔列斯基分解的中点法模拟岩土体互相关随机场 自相关函数可以选择:指数型、高斯型、二阶自回归型、指数余弦型、三角型自相关函数 案例
- STM32环形串口队列程序 大数据串口收发 实时不丢包 串口程序平常产品开发中编写或移植的程序并亲自测试通过,均为工程文件格式,可直接编译使用 该程序为大数据量吞吐的串口收发例程,中断接收,边收边
- MCGS与三菱变频器通讯基于MODBUS-RTU程序 ~ 可以通过触摸屏控制变频器正反转,运行停止,还能监视变频器的运行频率,输出频率,输出电压,输出电流以及转速 MCGS嵌入版7.7软件打开
- svr支持向量机回归预测 案例提供数据进行归一化处理,对训练数据训练,对测试集预测,并计算mae、rmse、R2、mre等误差指标 matlab代码,备注详细,根据自己需要修改案例数据即可
- pytho面试资源库(含基础题和面试真题带答案)
- stm32低压无感BLDC方波控制方案 MCU是ST32M0核 负载的ADC反电动势采样 1.启动传统三段式,强拖的步数少,启动快,任意电机基本可以顺利启动切闭环; 2.配有英非凌电感法入算法; 3
- 永磁同步电机滑模控制的直接转矩控制的matlab仿真 SMC DTC直接转矩控制加滑膜控制 转速环调节器 磁链和转矩调节器 磁链和转矩的计算SVPWM矢量控制 含有报告
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功