# Extra
## ground-truth:
- ### convert `xml` to our format:
1) Insert ground-truth xml files into **ground-truth/**
2) Run the python script: `python convert_gt_xml.py`
- ### convert YOLO to our format:
1) Add class list to the file `class_list.txt`
2) Insert ground-truth files into **ground-truth/**
3) Insert images into **images/**
4) Run the python script: `python convert_gt_yolo.py`
- ### convert keras-yolo3 to our format:
1) Add or update the class list to the file `class_list.txt`
2) Use the parameter `--gt` to set the **ground-truth** source.
3) Run the python script: `python3 convert_keras-yolo3.py --gt <gt_file_path>`
1) Supports only python 3.
2) This code can handle recursive annotation structure. Just use the `-r` parameter.
3) The converted annotation is placed by default in a new from_kerasyolo3 folder. You can change that with the parameter `-o`.
4) The format is defined according with github.com/qqwweee/keras-yolo3
## detection-results:
- ### convert darkflow `json` to our format:
1) Insert result json files into **detection-results/**
2) Run the python script: `python convert_dr_darkflow_json.py`
- ### convert YOLO to our format:
After runnuning darknet on a list of images, e.g.: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show -ext_output < data/test.txt > result.txt`
1) Copy the file `result.txt` to the folder `extra/`
2) Run the python script: `python convert_dr_yolo.py`
- ### convert keras-yolo3 to our format:
1) Add or update the class list to the file `class_list.txt`
2) Use the parameter `--dr` to set the **detection-results** source.
3) Run the python script: `python3 convert_keras-yolo3.py --dr <dr_file_path>`
1) Supports only python 3.
2) This code can handle recursive annotation structure. Just use the `-r` parameter.
3) The converted annotation is placed by default in a new from_kerasyolo3 folder. You can change that with the parameter `-o`.
4) The format is defined according with github.com/gustavovaliati/keras-yolo3
## Find the files that contain a specific class of objects
1) Run the `find_class.py` script and specify the **class** as argument, e.g.
`python find_class.py chair`
## Intersect ground-truth and detection-results files
This script ensures same number of files in ground-truth and detection-results folder.
When you encounter file not found error, it's usually because you have
mismatched numbers of ground-truth and detection-results files.
You can use this script to move ground-truth and detection-results files that are
not in the intersection into a backup folder (backup_no_matches_found).
This will retain only files that have the same name in both folders.
1) Prepare `.txt` files in your `ground-truth` and `detection-results` folders.
2) Run the `intersect-gt-and-dr.py` script to move non-intersected files into a backup folder (default: `backup_no_matches_found`).
`python intersect-gt-and-dr.py`
没有合适的资源?快使用搜索试试~ 我知道了~
基于python实现的华为智慧工地-安全帽检测
共45个文件
py:20个
txt:10个
ds_store:5个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 59 浏览量
2024-04-26
21:08:28
上传
评论
收藏 1.01MB ZIP 举报
温馨提示
安全帽检测系统通过深度学习的目标检测模型来对图片中出现的安全帽和人头部进行检测,可以近似看作是分类为'hat'和'person'的目标检测问题。 ## 环境 - Python 3.5.2 - Keras 2.1.5 - tensorflow 1.6.0
资源推荐
资源详情
资源评论
收起资源包目录
Helmet-Detection-code.zip (45个子文件)
Helmet-Detection-code
.DS_Store 12KB
voc_annotation.py 1KB
yolo_video.py 2KB
font
FiraMono-Medium.otf 124KB
SIL Open Font License.txt 4KB
input
.DS_Store 6KB
ground-truth
.DS_Store 6KB
detection-results
.DS_Store 6KB
coco_annotation.py 1KB
model_data
.DS_Store 6KB
yolo_anchors.txt 76B
coco_classes.txt 625B
tiny_yolo_anchors.txt 50B
voc_classes.txt 10B
convert.py 10KB
val.txt 185KB
mAP.py 33KB
darknet53.cfg 6KB
test.txt 458KB
yolov3.cfg 8KB
yolov3-tiny.cfg 2KB
kmeans.py 3KB
yolo_detet.py 8KB
train_bottleneck.py 10KB
train.py 8KB
__pycache__
yolo.cpython-37.pyc 7KB
yolo3
utils.py 4KB
__init__.py 0B
model.py 17KB
__pycache__
__init__.cpython-37.pyc 146B
utils.cpython-37.pyc 4KB
model.cpython-37.pyc 12KB
README.md 2KB
yolo.py 8KB
train.txt 1.58MB
scripts
extra
intersect-gt-and-dr.py 2KB
convert_dr_yolo.py 2KB
convert_gt_yolo.py 3KB
class_list.txt 381B
convert_keras-yolo3.py 4KB
convert_gt_xml.py 1KB
result.txt 668B
find_class.py 1KB
README.md 3KB
convert_dr_darkflow_json.py 1KB
共 45 条
- 1
资源评论
MarcoPage
- 粉丝: 4260
- 资源: 8839
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功