# 3DMM-fitting
This project is designed to fit a 3DMM to a frontal-face picture profile and a profile picture of the same person simultaneously. This is supposed to lead to a more reliable fitting result than the traditional way in which only one 2D picture is used, since we acquired additional depth information from the extra profile image.
## Library requirements
* Python3.6
* [OpenCV](http://opencv.org/)
* [Dlib](http://dlib.net/)
* [Numpy](http://www.numpy.org/)
* [toml](https://github.com/uiri/toml)
The code has only been tested on Windows10 with Anaconda Python.
## Instructions
You can find sample code at `test\fitting_test.py`. In the folder `data\`, two sets of sample images are already given to test the code. These images are from [color FERET database](https://www.nist.gov/itl/iad/image-group/color-feret-database). The facial landmarks are saved as pts files with the same name as the pictures. Please note that the frontal-face landmarks are annotated according to the iBug but the profile landmarks are annotated in a new way showed as below.
![the landmarks of a profile](https://i.imgur.com/ARFkW5F.jpg)
Not all the landmarks are used in the process of 3D-fitting.
The frontal face image is automatically annotated with Dlib library. You can call the `frontal_face_marker` funtion at `assist\marker.py` to get a pts file contains the landmarks of the frontal face image. The profile image is presently marked manually. You can call the `manual_marker` fuction at `assist\marker.py` to do it.
## Presentation
Run `test\fitting_test.py` with default imput images, you should get a picture discribes the accuracy of the fitting.
![fitting result img](https://github.com/Yinghao-Li/3DMM-fitting/blob/master/test/00029ba010_960521-outcome.jpg
)
This picture will be saved in the `test\` folder, along with the generated 3D model as ply file.
![fitting result 3D](https://github.com/Yinghao-Li/3DMM-fitting/blob/master/test/3D-captured.PNG)
没有合适的资源?快使用搜索试试~ 我知道了~
资源详情
资源评论
资源推荐
收起资源包目录
基于flask搭建的3DMM人脸三维建模系统 (270个子文件)
py_sfm_shape_3448.bin 7.65MB
py_expression_blendshapes_3448.bin 243KB
FlaskWebProject1.pyproj.CoreCompileInputs.cache 42B
bootstrap.css 174KB
bootstrap.css 174KB
bootstrap.min.css 141KB
bootstrap.min.css 141KB
bootstrap.css 124KB
bootstrap.css 124KB
bootstrap.min.css 96KB
bootstrap.min.css 96KB
bootstrap-grid.css 43KB
bootstrap-grid.css 43KB
bootstrap-grid.min.css 33KB
bootstrap-grid.min.css 33KB
style.css 19KB
style.css 7KB
bootstrap-reboot.css 5KB
bootstrap-reboot.css 5KB
bootstrap-reboot.min.css 4KB
bootstrap-reboot.min.css 4KB
site.css 723B
site.css 723B
shape_predictor_68_face_landmarks.dat 95.08MB
glyphicons-halflings-regular.eot 14KB
glyphicons-halflings-regular.eot 14KB
.gitattributes 66B
register.html 10KB
login.html 10KB
base2.html 9KB
sub.html 3KB
index.html 3KB
newlogin.html 3KB
sub.html 2KB
login_test.html 2KB
record_model.html 2KB
result.html 2KB
view_model.html 1KB
query_result.html 1KB
view.html 1KB
index2.html 1KB
face_detection.html 1KB
face.html 1KB
base.html 1KB
tdshow.html 1KB
base.html 1KB
query_photo.html 814B
home2.html 741B
base2.html 734B
feedback.html 576B
login.html 452B
register.html 441B
upload.html 424B
index.html 415B
WebPage1.html 388B
save_failure.html 321B
upload_ok.html 284B
view_error.html 276B
home.html 265B
database_error.html 251B
feedback_success.html 246B
save_success.html 217B
empty_image.html 208B
updatabase.html 202B
feedback_error.html 190B
sql_model.html 168B
favicon.ico 5KB
favicon.ico 5KB
Display.ipynb 8KB
search.ipynb 1KB
front-outcome.jpg 651KB
front-outcome.jpg 378KB
outcome.jpg 313KB
00029ba010_960521-outcome.jpg 257KB
00029ba010_960521-outcome.jpg 257KB
background.jpg 88KB
profile.jpg 51KB
face_detection.jpg 34KB
show.jpg 22KB
face.jpg 20KB
test.jpg 17KB
front.jpg 11KB
front.jpg 11KB
05.jpg 8KB
jquery-1.10.2.js 277KB
jquery-1.10.2.js 277KB
bootstrap.bundle.js 191KB
bootstrap.bundle.js 191KB
jquery-1.10.2.intellisense.js 159KB
jquery-1.10.2.intellisense.js 159KB
bootstrap.js 112KB
bootstrap.js 112KB
jquery-1.10.2.min.js 92KB
jquery-1.10.2.min.js 92KB
bootstrap.bundle.min.js 66KB
bootstrap.bundle.min.js 66KB
bootstrap.js 60KB
bootstrap.js 60KB
bootstrap.min.js 53KB
bootstrap.min.js 53KB
共 270 条
- 1
- 2
- 3
MrGao
- 粉丝: 734
- 资源: 28
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 结合 Swin Transformer 的小物体检测算法用于茶芽检测.zip
- 彩蝶ARP防火墙,很好用!
- 简单易用的模拟器 YOLOv5 鸟瞰视角物体检测.zip
- 高恪AC固件斐讯K2通用包
- 简单插入一些源码,实现的人脸识别项目 供学习参考 具体使用到yolov5人脸检测、arcface人脸识别 .zip
- windows 2003密钥
- 社交距离检测,一个使用 yolo 物体检测的深度学习计算机视觉项目.zip
- 传奇微端架设详细说明,快来下载啊
- 音频放大器的设计与制作-(模拟电子技术综合设计)项目报告
- 目标检测yolov5 v6.0版,pytorch实现,标注,增强,自定义训练数据集全流程.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0