//
//###########################################################################
//
// FILE: Example_28xAdc.c
//
// TITLE: DSP28 ADC Example Program.
//
// ASSUMPTIONS:
//
// This program requires the DSP28 header files. To compile the
// program as is, it should reside in the DSP28/examples/adc
// sub-directory.
//
// As supplied, this project is configured for "boot to H0" operation.
//
// DESCRIPTION:
//
// This example sets up the PLL in x10/2 mode, divides SYSCLKOUT
// by six to reach a 25Mhz HSPCLK (assuming a 30Mhz XCLKIN). The
// clock divider in the ADC is not used so that the ADC will see
// the 25Mhz on the HSPCLK. Interrupts are enabled and the EVA
// is setup to generate a periodic ADC SOC on SEQ1. Two channels
// are converted, ADCINA3 and ADCINA2.
//
// Watch Variables:
//
// Voltage1[10] Last 10 ADCRESULT0 values
// Voltage2[10] Last 10 ADCRESULT1 values
// ConversionCount Current result number 0-9
// LoopCount Idle loop counter
//
//
//###########################################################################
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|======|===============================================
// 0.58| 18 Jun 2002 | D.F. | Original Release
//###########################################################################
// Step 0. Include required header files
// DSP28_Device.h: device specific definitions #include statements for
// all of the peripheral .h definition files.
// DSP28_Example.h is specific for the given example.
#include "DSP28_Device.h"
// Prototype statements for functions found within this file.
interrupt void adc_isr(void);
// Global variables used in this example:
Uint16 LoopCount;
Uint16 ConversionCount;
Uint16 Voltage1[10];
Uint16 Voltage2[10];
main()
{
// Step 1. Initialize System Control registers, PLL, WatchDog, Clocks to default state:
// This function is found in the DSP28_SysCtrl.c file.
InitSysCtrl();
// For this example, set HSPCLK to SYSCLKOUT / 6 (25Mhz assuming 150Mhz SYSCLKOUT)
EALLOW;
SysCtrlRegs.HISPCP.all = 0x3; // HSPCLK = SYSCLKOUT/6
EDIS;
// Step 2. Select GPIO for the device or for the specific application:
// This function is found in the DSP28_Gpio.c file.
// InitGpio(); // Not required for this example
// Step 3. Initialize PIE vector table:
// The PIE vector table is initialized with pointers to shell Interrupt
// Service Routines (ISR). The shell routines are found in DSP28_DefaultIsr.c.
// Insert user specific ISR code in the appropriate shell ISR routine in
// the DSP28_DefaultIsr.c file.
// Disable and clear all CPU interrupts:
DINT;
IER = 0x0000;
IFR = 0x0000;
// Initialize Pie Control Registers To Default State:
// This function is found in the DSP28_PieCtrl.c file.
InitPieCtrl();
// Initialize the PIE Vector Table To a Known State:
// This function is found in DSP28_PieVect.c.
// This function populates the PIE vector table with pointers
// to the shell ISR functions found in DSP28_DefaultIsr.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals to a known state:
// This function is found in DSP28_InitPeripherals.c
// InitPeripherals(); // For this example just init the ADC
InitAdc(); // DSP28_Adc.c
// Step 5. User specific functions, Reassign vectors (optional), Enable Interrupts:
// Reassign ADC ISR.
// Reassign the PIE vector for the ADC to point to a different ISR then
// the shell routine found in DSP28_DefaultIsr.c.
// This is done if the user does not want to use the shell ISR routine
// but instead wants to use their own ISR. This step is optional:
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.ADCINT = &adc_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Include application specific functions. This is for this example:
// Enable ADCINT in PIE
PieCtrlRegs.PIEIER1.bit.INTx6 = 1;
// Enable CPU Interrupt 1
IER |= M_INT1; // Enable Global INT1
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
LoopCount = 0;
ConversionCount = 0;
// Configure ADC
AdcRegs.ADCMAXCONV.all = 0x0001; // Setup 2 conv's on SEQ1
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x3; // Setup ADCINA3 as 1st SEQ1 conv.
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x2; // Setup ADCINA2 as 2nd SEQ1 conv.
AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1; // Enable EVASOC to start SEQ1
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // Enable SEQ1 interrupt (every EOS)
// Configure EVA
// Assumes EVA Clock is already enabled in InitSysCtrl();
EvaRegs.T1CMPR = 0x0080; // Setup T1 compare value
EvaRegs.T1PR = 0xFFFF; // Setup period register
EvaRegs.GPTCONA.bit.T1TOADC = 1; // Enable EVASOC in EVA
EvaRegs.T1CON.all = 0x1042; // Enable timer 1 compare (upcount mode)
// Wait for ADC interrupt
while (1)
{
LoopCount++;
}
}
interrupt void adc_isr(void)
{
Voltage1[ConversionCount] = AdcRegs.ADCRESULT0;
Voltage2[ConversionCount] = AdcRegs.ADCRESULT1;
// If 40 conversions have been logged, start over
if(ConversionCount == 9)
{
ConversionCount = 0;
}
else ConversionCount++;
// Reinitialize for next ADC sequence
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE
return;
}