Estimate Std. Error t value Pr(>|t|)
(Intercept) -38.45509 8.04901 -4.778 0.00139 **
x 0.67461 0.05191 12.997 1.16e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06
三、predict()函数
语法
线性回归中的 predict()的基本语法是 -
predict(object, newdata)
以下是使用的参数的描述 -
object - 是已经使用 lm()函数创建的公式。
newdata - 是包含预测变量的新值的向量。
示例: 预测新人的体重
# The predictor vector.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
# The resposne vector.
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
# Apply the lm() function.
relation <- lm(y~x)
# Find weight of a person with height 170.
a <- data.frame(x = 170)
result <- predict(relation,a)
print(result)
当我们执行上述代码时,会产生以下结果 -
1
76.22869
示例:以图形方式可视化线性回归,参考以下代码实现 -
# Create the predictor and response variable.
评论0