function [T,P,U,Q,B,W] = pls (X,Y,tol2)
% PLS Partial Least Squares Regrassion
%
% [T,P,U,Q,B,Q] = pls(X,Y,tol) performs particial least squares regrassion
% between the independent variables, X and dependent Y as
% X = T*P' + E;
% Y = U*Q' + F = T*B*Q' + F1;
%
% Inputs:
% X data matrix of independent variables
% Y data matrix of dependent variables
% tol the tolerant of convergence (defaut 1e-10)
%
% Outputs:
% T score matrix of X
% P loading matrix of X
% U score matrix of Y
% Q loading matrix of Y
% B matrix of regression coefficient
% W weight matrix of X
%
% Using the PLS model, for new X1, Y1 can be predicted as
% Y1 = (X1*P)*B*Q' = X1*(P*B*Q')
% or
% Y1 = X1*(W*inv(P'*W)*inv(T'*T)*T'*Y)
%
% Without Y provided, the function will return the principal components as
% X = T*P' + E
%
% Example: taken from Geladi, P. and Kowalski, B.R., "An example of 2-block
% predictive partial least-squares regression with simulated data",
% Analytica Chemica Acta, 185(1996) 19--32.
%{
x=[4 9 6 7 7 8 3 2;6 15 10 15 17 22 9 4;8 21 14 23 27 36 15 6;
10 21 14 13 11 10 3 4; 12 27 18 21 21 24 9 6; 14 33 22 29 31 38 15 8;
16 33 22 19 15 12 3 6; 18 39 26 27 25 26 9 8;20 45 30 35 35 40 15 10];
y=[1 1;3 1;5 1;1 3;3 3;5 3;1 5;3 5;5 5];
% leave the last sample for test
N=size(x,1);
x1=x(1:N-1,:);
y1=y(1:N-1,:);
x2=x(N,:);
y2=y(N,:);
% normalization
xmean=mean(x1);
xstd=std(x1);
ymean=mean(y1);
ystd=std(y);
X=(x1-xmean(ones(N-1,1),:))./xstd(ones(N-1,1),:);
Y=(y1-ymean(ones(N-1,1),:))./ystd(ones(N-1,1),:);
% PLS model
[T,P,U,Q,B,W]=pls(X,Y);
% Prediction and error
yp = (x2-xmean)./xstd * (P*B*Q');
fprintf('Prediction error: %g\n',norm(yp-(y2-ymean)./ystd));
%}
%
% By Yi Cao at Cranfield University on 2nd Febuary 2008
%
% Reference:
% Geladi, P and Kowalski, B.R., "Partial Least-Squares Regression: A
% Tutorial", Analytica Chimica Acta, 185 (1986) 1--7.
%
% Input check
error(nargchk(1,3,nargin));
error(nargoutchk(0,6,nargout));
if nargin<2
Y=X;
end
tol = 1e-10;
if nargin<3
tol2=1e-10;
end
% Size of x and y
[rX,cX] = size(X);
[rY,cY] = size(Y);
assert(rX==rY,'Sizes of X and Y mismatch.');
% Allocate memory to the maximum size
n=max(cX,cY);
T=zeros(rX,n);
P=zeros(cX,n);
U=zeros(rY,n);
Q=zeros(cY,n); %特征向量按X,Y中的独立变量较多的个数来设置,这里为4,X,Y的投影向量是成对出现的,即使,Y的最后一个特征向量可由前三个线性表示
B=zeros(n,n);
W=P;
k=0;
% iteration loop if residual is larger than specfied
while norm(Y)>tol2 && k<n %tol2 控制残差的范围限度
% choose the column of x has the largest square of sum as t.
% choose the column of y has the largest square of sum as u.
[dummy,tidx] = max(sum(X.*X));
[dummy,uidx] = max(sum(Y.*Y));
t1 = X(:,tidx);
u = Y(:,uidx);
t = zeros(rX,1);
% iteration for outer modeling until convergence
while norm(t1-t) > tol
w = X'*u;
w = w/norm(w);
t = t1;
t1 = X*w;
q = Y'*t1;
q = q/norm(q);
u = Y*q;
end
% update p based on t
t=t1;
p=X'*t/(t'*t);
pnorm=norm(p);%C:\Program Files\MATLAB\R2016a\toolbox\mpc\mpcobsolete\plsr.m
% p=p/pnorm;
%t=t*pnorm;
% w=w*pnorm;
% regression and residuals
b = u'*t/(t'*t);
X = X - t*p';
Y = Y - b*t*q'; %这里的b*t=u
% save iteration results to outputs:
k=k+1;
T(:,k)=t;
P(:,k)=p;
U(:,k)=u;
Q(:,k)=q;
W(:,k)=w;
B(k,k)=b;
% uncomment the following line if you wish to see the convergence
% disp(norm(Y))
end
T(:,k+1:end)=[];
P(:,k+1:end)=[];
U(:,k+1:end)=[];
Q(:,k+1:end)=[];
W(:,k+1:end)=[];
B=B(1:k,1:k);
评论0