clear all;
clc;
close all;
%===============初始参数设定===============
T=1; %采样时间间隔
N=40; %测量时间
M_number=1; %程序运行次数
number_PHD=zeros(1,N);
q_noise1=0.5; %状态噪声方差
q_noise2=0.1; %状态噪声方差
q_noise=[q_noise1;q_noise2];
T_prun=1e-5; %修剪门限
U_merg=4; %合并门限
J_max=100; %最大高斯数
N_max=20; %最大目标数
c_ospa=70; %势误差与状态误差的调节因子
p_ospa=2; %OSPA取2阶距离
F=[1,T,0,0
0,1,0,0
0,0,1,T
0,0,0,1]; %存活目标转移矩阵
G=[T^2/2,0
T,0
0,T^2/2
0,T]; %状态噪声的转移矩阵
H=[1,0,0,0
0,0,1,0]; %量测矩阵
r_noise=[0.5;0.5]; %量测噪声标准差
R=[r_noise(1)^2,0
0,r_noise(2)^2];
ps=0.99; %目标存活概率
pd=0.9; %目标检测概率
r=5; %杂波平均数
%===================目标的真实运动轨迹====================
target_position=TARGET_FORM(F,G,q_noise); %目标的真实运动轨迹
target_position.m(2).s=[zeros(4,7),target_position.m(2).s];
target_position.m(3).s=[zeros(4,11),target_position.m(3).s];
target_position.m(4).s=[zeros(4,25),target_position.m(4).s];
%====================存活目标初始化=======================
initial.m=target_position.m(1).s(:,1); %目标的初始位置
Q_noise=[q_noise1^2,0
0,q_noise2^2];
initial.P=diag([1 2 1 2]); %目标的初始协方差矩阵
initial.w=1;
initial.J=1;
%====================新生目标初始化=======================
birth.m(:,1)=[0,0,0,0]'; %birth对应于目标出现强度函数
birth.m(:,2)=[-10,0,0,0]';
birth.m(:,3)=[0,0,-5,0]';
birth.P=diag([5 1 5 1]);
birth.P=cat(3,birth.P,birth.P,birth.P); %P为4*4*3 double
birth.w(1)=0.1;
birth.w(2)=0.1;
birth.w(3)=0.1;
birth.J=3; %新生目标高斯分量数
%======================目标随机集====================================
for i=1:40
x(i).m=[];
for j=1:4
if target_position.n(j,i)==1
x(i).m=[x(i).m,target_position.m(j).s(:,i)];%目标位置的更新
end
end
end
d_PHD=zeros(M_number,N);
% for k=1:M_number
k=1;
%======================生成量测报告========================
Y_measure=MEASUREMENT(H,r_noise,target_position,N,pd,r); %产生测量数据
%==========================================================
% 主程序
%==========================================================
x_number_PHD=zeros(1,N);
x_number_PHD(1)=1; %目标的初始个数
x_filter_PHD=initial;
tic
for i=2:N;
%========================PHD目标状态预测===========================
x_predic_PHD=PREDIC(x_filter_PHD,F,ps,birth,q_noise,G);
%========================PHD目标更新===========================
x_filter_PHD=UPDATA_PHD(x_predic_PHD,Y_measure(i),pd,H,R,r);
%=====================PHD修剪合并高斯项========================
x_filter_PHD=PRUN_MERG(x_filter_PHD,T_prun,U_merg,J_max);
%======================PHD估计目标数目=========================
x_number_PHD(i)=(sum(x_filter_PHD.w));
%======================PHD目标状态估计=========================
x_estimate_PHD(i).m=PHD_ESTIMATE(x_filter_PHD);
if (~isempty(x(i).m)) && (~isempty(x_estimate_PHD))
d_PHD(k,i)=OSPA(x_estimate_PHD(i).m,x(i).m,c_ospa,p_ospa);
end
end
toc
number_PHD=number_PHD+x_number_PHD;
avg_d_PHD=mean(d_PHD,1);
number_PHD=number_PHD/M_number;
num=sum(target_position.n);
figure(3)
hold on
plot(num)
plot(number_PHD,'k-*')
legend('true number','PHD estimate number')
xlabel('time'),ylabel('number')
axis([0 50 0 5]);
figure(4)
plot(avg_d_PHD(1:N),'k-'),hold on
xlabel('time'),ylabel('d')
legend('PHD OPSA Distance')
评论5