package edu.cs4730.opengl2ex1;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLES20;
import android.opengl.GLSurfaceView;
import android.opengl.Matrix;
import android.os.SystemClock;
/**
* This class implements our custom renderer. Note that the GL10 parameter passed in is unused for OpenGL ES 2.0
* renderers -- the static class GLES20 is used instead.
*
* This code is borrowed from http://www.learnopengles.com/android-lesson-one-getting-started/
*
*/
public class LessonOneRenderer implements GLSurfaceView.Renderer
{
/**
* Store the model matrix. This matrix is used to move models from object space (where each model can be thought
* of being located at the center of the universe) to world space.
*/
private float[] mModelMatrix = new float[16];
/**
* Store the view matrix. This can be thought of as our camera. This matrix transforms world space to eye space;
* it positions things relative to our eye.
*/
private float[] mViewMatrix = new float[16];
/** Store the projection matrix. This is used to project the scene onto a 2D viewport. */
private float[] mProjectionMatrix = new float[16];
/** Allocate storage for the final combined matrix. This will be passed into the shader program. */
private float[] mMVPMatrix = new float[16];
/** Store our model data in a float buffer. */
private final FloatBuffer mTriangle1Vertices;
private final FloatBuffer mTriangle2Vertices;
private final FloatBuffer mTriangle3Vertices;
/** This will be used to pass in the transformation matrix. */
private int mMVPMatrixHandle;
/** This will be used to pass in model position information. */
private int mPositionHandle;
/** This will be used to pass in model color information. */
private int mColorHandle;
/** How many bytes per float. */
private final int mBytesPerFloat = 4;
/** How many elements per vertex. */
private final int mStrideBytes = 7 * mBytesPerFloat;
/** Offset of the position data. */
private final int mPositionOffset = 0;
/** Size of the position data in elements. */
private final int mPositionDataSize = 3;
/** Offset of the color data. */
private final int mColorOffset = 3;
/** Size of the color data in elements. */
private final int mColorDataSize = 4;
/**
* Initialize the model data.
*/
public LessonOneRenderer()
{
// Define points for equilateral triangles.
// This triangle is red, green, and blue.
final float[] triangle1VerticesData = {
// X, Y, Z,
// R, G, B, A
-0.5f, -0.25f, 0.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.25f, 0.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.559016994f, 0.0f,
0.0f, 1.0f, 0.0f, 1.0f};
// This triangle is yellow, cyan, and magenta.
final float[] triangle2VerticesData = {
// X, Y, Z,
// R, G, B, A
-0.5f, -0.25f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f,
0.5f, -0.25f, 0.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 0.559016994f, 0.0f,
1.0f, 0.0f, 1.0f, 1.0f};
// This triangle is white, gray, and black.
final float[] triangle3VerticesData = {
// X, Y, Z,
// R, G, B, A
-0.5f, -0.25f, 0.0f,
1.0f, 1.0f, 1.0f, 1.0f,
0.5f, -0.25f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
0.0f, 0.559016994f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f};
// Initialize the buffers.
mTriangle1Vertices = ByteBuffer.allocateDirect(triangle1VerticesData.length * mBytesPerFloat)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTriangle2Vertices = ByteBuffer.allocateDirect(triangle2VerticesData.length * mBytesPerFloat)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTriangle3Vertices = ByteBuffer.allocateDirect(triangle3VerticesData.length * mBytesPerFloat)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTriangle1Vertices.put(triangle1VerticesData).position(0);
mTriangle2Vertices.put(triangle2VerticesData).position(0);
mTriangle3Vertices.put(triangle3VerticesData).position(0);
}
@Override
public void onSurfaceCreated(GL10 glUnused, EGLConfig config)
{
// Set the background clear color to gray.
GLES20.glClearColor(0.5f, 0.5f, 0.5f, 0.5f);
// Position the eye behind the origin.
final float eyeX = 0.0f;
final float eyeY = 0.0f;
final float eyeZ = 1.5f;
// We are looking toward the distance
final float lookX = 0.0f;
final float lookY = 0.0f;
final float lookZ = -5.0f;
// Set our up vector. This is where our head would be pointing were we holding the camera.
final float upX = 0.0f;
final float upY = 1.0f;
final float upZ = 0.0f;
// Set the view matrix. This matrix can be said to represent the camera position.
// NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and
// view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose.
Matrix.setLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ);
final String vertexShader =
"uniform mat4 u_MVPMatrix; \n" // A constant representing the combined model/view/projection matrix.
+ "attribute vec4 a_Position; \n" // Per-vertex position information we will pass in.
+ "attribute vec4 a_Color; \n" // Per-vertex color information we will pass in.
+ "varying vec4 v_Color; \n" // This will be passed into the fragment shader.
+ "void main() \n" // The entry point for our vertex shader.
+ "{ \n"
+ " v_Color = a_Color; \n" // Pass the color through to the fragment shader.
// It will be interpolated across the triangle.
+ " gl_Position = u_MVPMatrix \n" // gl_Position is a special variable used to store the final position.
+ " * a_Position; \n" // Multiply the vertex by the matrix to get the final point in
+ "} \n"; // normalized screen coordinates.
final String fragmentShader =
"precision mediump float; \n" // Set the default precision to medium. We don't need as high of a
// precision in the fragment shader.
+ "varying vec4 v_Color; \n" // This is the color from the vertex shader interpolated across the
// triangle per fragment.
+ "void main() \n" // The entry point for our fragment shader.
+ "{ \n"
+ " gl_FragColor = v_Color; \n" // Pass the color directly through the pipeline.
+ "} \n";
// Load in the vertex shader.
int vertexShaderHandle = GLES20.glCreateShader(GLES20.GL_VERTEX_SHADER);
if (vertexShaderHandle != 0)
{
// Pass in the shader source.
GLES20.glShaderSource(vertexShaderHandle, vertexShader);
// Compile the shader.
GLES20.glCompileShader(vertexShaderHandle);
// Get the compilation status.
final int[] compileStatus = new int[1];
GLES20.glGetShaderiv(vertexShaderHandle, GLES20.GL_COMPILE_STATUS, compileStatus, 0);
// If the compilation failed, delete the shader.
if (compileStatus[0] == 0)
{
GLES20.glDeleteShader(vertexShaderHandle);
vertexShaderHandle = 0;
}
}
if (vertexShaderHandle == 0)
{
throw new RuntimeException("Error creating vertex shader.");
}
// Load in the fragment shader shader.
int fragmentShaderHandle = GLES20.glCreateShader(GLES20.GL_FRAGMENT_SHADER);
if (fragmentShaderHandle != 0)
{
// Pass in the shader source.
GLES20.glShaderSource(fragmen
极智视界
- 粉丝: 3w+
- 资源: 1770
最新资源
- HTML5实现好看的圣诞节网站源码.zip
- 独属于工科男的浪漫时刻-基于Python控制台的恋爱表白代码
- 供鸿蒙系统使用的libusb动态库
- redis客户端连接管理工具redis-desktop-manager
- C# WPF-CCS线体上料机检测铝巴位置检测程序 需要检测缺失和出框 .ziphalcon
- proteus8.10仿真stm32控制舵机程序(pwm舵机)
- C# WPF-usb hid 设备读写上位机、依赖.net framework 4.6、插入usb hid设备后可以选择一个usb设备之后进行通讯
- 使用python-flask-mysql完成一个注册页面
- 基于物联网MQTT协议设计的智能停车场管理系统项目源码(高分项目)
- C#winform-MES生产数据看板.zip
- GNSS,IMU资料,入门必看,都是公式
- jdk21安装包,jdk-21-windows-x64-bin.zip
- C# 欧姆龙一次组盘上位机.zip
- STM32F103VET6 PCA9685舵机驱动程序 含源码 原理图
- ES 内存指标现状梳理sdsdsdsds
- 基于STM32的智能灌溉系统源码(高分项目).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈